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Random optical-pulse polarization switching along an active optical medium in the Λ-configuration with

spatially disordered occupation numbers of its lower energy sub-level pair is described using the idealized

integrable Maxwell-Bloch model. Analytical results describing the light polarization-switching statistics for the

single self-induced transparency pulse are compared with statistics obtained from direct Monte-Carlo numerical

simulations. c© 2013 Optical Society of America
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The model of light interacting with a material sample
composed of three-level active atoms has made possi-
ble the descriptions of several nontrivial optical phenom-
ena, including lasing without inversion [1], slow light [2],
and electric-field polarization of solitons in self-induced
transparency [3]. Its simplest version including a non-
degenerate upper and two degenerate lower working
atomic levels — the Λ configuration — is completely in-
tegrable when the pulse width is much shorter than the
medium relaxation times [4]. It describes a new type of a
self-induced transparency pulse, which may be a solitary
wave only asymptotically, but in general switches into
one of the two purely two-level transitions between one
of the lower levels and the upper level. These transitions
correspond to circularly polarized light, and the direction
of the switching is determined by the population sizes
of the degenerate lower levels [5, 6]. Thus, for spatially
disordered populations, random polarization switching
takes place as a light soliton travels along the material
sample. The integrability of the Λ configuration furnishes
a unique opportunity to study the mechanism responsi-
ble for this random switching and its statistical proper-
ties exactly in the framework of a sufficiently idealized
model, which otherwise would be impossible because of
strong nonlinearity. In this letter, we both discuss the an-
alytical results [7] on this switching and compare them
with the results of numerical simulations.
Resonant propagation of ultra-short, monochromatic,

elliptically polarized light pulses through a two-level,
active medium with a doubly degenerate ground level
(Λ-configuration) is described by the quasi-classical
Maxwell-Bloch system [3, 4, 6, 8]

∂tE± + ∂xE± =

∫ ∞

−∞

ρ± g(ν)dν, (1a)

∂tρ+ − 2iλρ+ = [E+(N − n+)− E−µ
∗] /2, (1b)

∂tρ− − 2iλρ− = [E−(N − n−)− E+µ] /2, (1c)

∂tµ = [E+
∗ρ− + E−ρ+

∗] /2, (1d)

∂tN = − [E+ρ+
∗ + E+

∗ρ+

+E−ρ−
∗ + E−

∗ρ−] /2, (1e)

∂tn± = [E±ρ±
∗ + E±

∗ρ±] /2. (1f)

Here, E±(x, t) are the envelopes of the electric field
and ρ±(x, t, λ) and µ(x, t, λ) of the medium-polarization,
n±(x, t, λ) and N (x, t, λ) the population densities of the
ground and excited levels, respectively, λ the frequency
detuning, and g(λ) ≥ 0, with

∫∞

−∞
g(λ) dλ = 1, the

spectral-line shape. The “+” and “−” transitions in-
teract with the left- and right-circularly polarized pulse
components, while µ is due to the two-photon transition
between the ground levels. The purely two-level “+” and
“−” transitions are invariant and involve only circularly-
polarized light. A time-conserved quantity of Eqs. (1) is
N + n+ + n− = 1, where unit normalization is chosen.
The approximations made in Eqs. (1) are (i) the

pulse-width is much longer than the light oscillation pe-
riod (slowly-varying envelope approximation) and much
shorter than the relaxation time-scales in the medium,
and (ii) unidirectional propagation. The latter holds pro-
vided the interaction time of counter-propagating pulses
is much shorter than the nonlinear-response time of the
medium. Equations (1) are dimensionless, e.g., the speed
of light is c = 1.
If the spectral width of the pump pulse priming the

ground states of the medium is much broader than the
width of g(λ), i.e., the initial populations can be consid-
ered homogeneous within the width of g(λ), we find the
two components of the soliton solution [5–7]

E±(x, t) = 4iβG±(x)e
iΘ±(x,t) sech

[

2β(t− x) + τx

+
1

2
ln

|d+||d−|
2β2

+
1

2
ln cosh

(

2τA(x) + ln
|d+|
|d−|

)]

, (2)

where G±(x) =
√

[1± tanh (2τA(x) + ln |d+| / |d−|)] /2
are their amplitudes and Θ±(x, t) = 2γ(t − x) + σ[x ±
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A(x)]−arg d± their phases, which in turn depend on the
soliton parameters γ and β. Here,

A(x) =
∫ x

0 α(ξ)dξ, (3)

is the cumulative initial population difference α(x) along
the medium sample up to any given position x, which
satisfies the asymptotic condition

lim
t→−∞

n±(x, t, λ) = [1± α(x)] /2 ≥ 0. (4)

The rest of the material variables are known to vanish as
t→ −∞ for this solution [6], so that only the two degen-
erate lower levels are populated initially. Putting the ini-
tial time at −∞ is justified because, in gases, the lifetime
of the system ranges from 10−5 to 10−3 seconds, while
the typical pulse-width is 10−8 seconds or shorter [9].
The real-valued coefficients σ and τ are given by

σ + iτ =
∫∞

−∞

g(ν)
8(γ+iβ−ν)dν, (5)

with β > 0. Equation (2) shows that the maximal ampli-
tude of each soliton component equals 4β and its tem-
poral width equals 1/(2β). The constants d± give the
soliton phase and position. Note that, since τ < 0, the
amplitude G+(x) decreases and G−(x) increases with
increasing A(x), and vice versa with decreasing A(x),
which is the polarization-switching effect of [5, 6].
The light-pulse polarization can be described in terms

of the polarization ellipse, which is characterized by
the orientation and ellipticity angles, ψ and η, with
−π/4 ≤ η ≤ π/4. These can be found from the for-
mulas tan 2ψ = i(E+E

∗
− − E−E

∗
+)/(E+E

∗
− + E−E

∗
+)

and sin 2η = (|E+|2 − |E−|2)/(|E+|2 + |E−|2), which,
for the soliton (2) give ψ = −σA(x) + arg

(

d∗−d+
)

/2,
sin 2η = tanh [2τA(x) + ln (|d+| / |d−|)] [6]. Note that
these two angles are time-independent.
If the initial population difference α(x) in the medium

is random and spatially statistically homogeneous, we
can approximate it as white noise

〈α(x)〉 = b, 〈[α(x) − b][α(x′)− b]〉 = a2δ(x− x′), (6)

where 〈·〉 denotes ensemble averaging over all possi-
ble realizations of α(x), and δ(·) is the Dirac Delta
function. This approximation is consistent provided the
pulse-carrier frequency λ0, the correlation length Lc of
α(x), the soliton width 1/β, and the observation loca-
tion x along the sample satisfy the inequalities λ0 ≪
Lc ≪ 1/β ≪ x. The first is related to the slowly-
varying envelope approximation (mentioned above), the
second to the unidirectionality assumption, and the last
to the white-noise assumption. In this case, the cumu-
lative integral A(x) in Eq. (3) can be approximated as
A(x) ∼ aW (x)+bx, whereW (x) is the standard Wiener
process. Note that the parameter a in Eq. (6), the cor-
relation length Lc, and the variance σ2

α of a true initial
population difference α(x) are related by a =

√
2Lc σα.

In an experiment, Lc would be approximately the
same as the coherence length ℓc ∼ λ2p/∆λp of the pump
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Fig. 1. PDF pψ(x; s), with β = 1/3, γ = 1/3, ε = 0,
d+ = d− = i, theoretical (black lines) and results from
1600 simulations (gray lines; green online). Left: b = 0,
a = 0.75. Right: b = −0.75, a = 0.5.
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Fig. 2. PDF pη(x; s), with β = 1/3, γ = 1/3, ε = 0,
d+ = d− = i, theoretical (black lines) and results from
1600 simulations (gray lines; green online). Left: b = 0,
a = 0.75. Right: b = −0.75, a = 0.5.

light used to prepare the optical medium, where λp is
the average wavelength of the pump light and ∆λp the
characteristic width of the light-source spectral line. If
the pump was a Ti-sapphire laser, λp ∼ 800 nm and
∆λp ∼ 5 nm [10], so ℓc ∼ 0.1 mm ≫ λ0 (∼ 600 nm
for sodium vapor) and a several-centimeters long exper-
imental device would be sufficiently long to capture the
desired statistical effects.
The orientation angle ψ(x) behaves like a Brownian

motion with drift −σb and diffusion coefficient 1
2σ

2a2and
its probability density function (PDF), pψ(x; s), at any x
is Gaussian in s with mean 〈ψ(x)〉 = −σbx+ 1

2 arg(d
∗
−d+)

and variance σ2
ψ(x) = σ2a2x. Note that the value of ψ(x)

is fixed at ψ = arg(d∗−d+)/2 when σ = 0. The PDF
pψ(x; s) shows excellent agreement with numerical sim-
ulations in Fig. 1. The Lorentzian spectral-line shape
g(λ) = ε/π(λ2 + ε2) was used in determining pψ(x; s)
and all subsequent PDFs. Comparisons in all figures are
made with ε = 0 corresponding to the Dirac Delta func-
tion, i.e., the limit of an infinitely sharp spectral line.
The PDF for the ellipticity angle η at any x equals

pη(x; s) = (1/
√
2πxa|τ | cos 2s) exp{−[tanh−1(sin 2s) −

2τbx − ln |d+|/|d−|]2/8a2τ2x} for −π/4 ≤ s ≤ π/4. For
large x, pη(x; s) concentrates at one or both circular po-
larizations at s = ±π/4 as pη(x; s) ∼ [δ(s+ π/4)+ δ(s−
π/4)]/2 if b = 0, ∼ δ(s+ π/4) if b > 0 and ∼ δ(s− π/4)
if b < 0. The PDF pη(x; s) shown in Fig. 2 accurately
describes the numerical simulations.
To quantify the polarization switching statistics, we

consider the periods during which the ellipticity angle η
enters, exits, and stays in the vicinity of either circular
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Fig. 3. Comparison of exit time statistics between ana-
lytical formulas and results from numerical simulations
when (left) no bias, b = 0, a = 0.75, and (right)
b = −0.75, a = 0.5. For both, β = 1/3, γ = 1/3, ε = 0,
d+ = d− = i.

polarization, π/4 − κ ≡ ηκ < |η| < π/4, for some ap-
propriately chosen small angular distance κ. More pre-
cisely, we study the statistics of the following random
distances:Xtra, over which the pulse polarization evolves
from linear (η = 0) to nearly-circular of either orienta-
tion (|η| = ηκ); Xint, over which the pulse polarization
evolves from linear to nearly-circular of either orientation
and back to linear; andXdep, beyond which the pulse po-
larization remains forever circularly-polarized, |η| > ηκ,
for all greater distances.
When b = 〈α(x)〉 = 0 we find [7]

pXtra
(x) =

√

2L/πx3
∞
∑

n=−∞

(4n+ 1)e−(4n+1)2L/2x, (7a)

pXint
(x) =

√

2L/πx3

[

∞
∑

n=0

(4n+ 2)e−(4n+2)2L/2x

−
∞
∑

n=1

4ne−16n2L/2x

]

, (7b)

where L =
[

tanh−1(cos 2κ)/2a|τ |
]2
. These two distribu-

tions are depicted in Fig. 3(left) and agree with the
numerical simulations. Note that 〈Xtra〉 = L, σ2

Xtra
=

2L2/3, but 〈Xint〉 = ∞.
Another statistic, when b = 0, is the fraction Φ of the

length over which the polarization η takes a certain sign.
Its PDF is pΦ(φ) = [π

√

φ(1 − φ)]−1 [7].
For b = 〈α(x)〉 6= 0, if b has opposite sign to the el-

lipticity angle η0 = sin−1 [tanh (ln(|d+|/|d−|))] /2 of the
injected pulse, the soliton polarization will first become
linear after a distance Xlin, move near the favored cir-
cular polarization over a subsequent distance Xtra, and
never leave this ultimate circular polarization after a sub-
sequent distance Xfluc. Thus, Xdep = Xlin+Xtra+Xfluc.
The first two distances are distributed as [7]

pX(x) =
(

|b|ℓ/a
√
2πx3

)

exp
[

−b2(ℓ− x)2/2a2x
]

, (8)

and 〈X〉 = ℓ, σ2
X = a2ℓ/b2, with ℓ = ln(|d+|/|d−|)/2|τb|

forX = Xlin and ℓ = tanh−1(cos 2κ)/2|τb| forX = Xtra.

The probability density of Xfluc is

pXfluc
(x) = (|b|/a

√
2πx) exp(−b2x/2a2). (9)

When b and η0 have the same sign, results are simi-
lar. The above two distributions show excellent agree-
ment with the numerical simulations in the right panel
of Fig. 3.
Numerical simulations of system (1) are carried out

by aligning a grid in x and t with spacing ∆x and ∆t
to the characteristics of Eq. (1a) (i.e. ∆x = ∆t) and
implementing a scheme based on the implicit mid-point
method. The initial conditions in n± are obtained us-
ing Eq. (4) in which α(x) is a Gaussian random variable
at each grid point with mean b and standard deviation
a/

√
∆x. The soliton enters through the boundary con-

dition on the left hand side, and no boundary condition
is needed on the right hand side.
In conclusion, we have shown excellent comparison be-

tween the analytical results and direct numerical sim-
ulations describing the statistics of the orientation, ψ,
and eccentricity, η, of the light polarization ellipse. We
also found favorable comparison for the distance over
which the light polarization evolves from linear to nearly-
circular, Xtra, and back again to linear, Xint, and, for
unequal distributions within the lower populations, the
distance between the point at which light first comes
close to its favored circular polarization and the point at
which it finally forever remains near it, Xfluc.
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