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Abstract. Driving nanomagnets by spin-polarized currents offers exciting prospects in
magnetoelectronics, but the response of the magnets to such currents remains poorly un-
derstood. We show that an averaged equation describing the diffusion of energy on a graph
captures the low-damping dynamics of these systems. From this equation we obtain the
bifurcation diagram of the magnets, including the critical currents to induce stable preces-
sional states and magnetization switching, as well as the mean times of thermally assisted
magnetization reversal in situations where the standard reaction rate theory of Kramers is
no longer valid. These results agree with experimental observations and give a theoretical
basis for a Néel-Brown-type formula with an effective energy barrier for the reversal times.

Manipulating thin-film magnetic elements with spin-polarized currents besides external
magnetic fields [12] has generated a lot of recent interest in applications to magnetoelec-
tronic devices that offer low power memory storage without the use of moving parts [2].
Understanding the response of the magnet to such currents is nontrivial, however, because
they apply a nonconservative force, called spin-transfer torque (STT), on the system. Like
other nongradient systems with no Lyapunov function, the phase portrait of nanomagnets
in the presence of STT can be quite complex, and include limit cycles or chaotic trajecto-
ries besides fixed points. When the applied fields and/or currents are nonstationary, or in
the presence of thermal noise, the situation is even worse. In particular, Kramers’ reaction
rate theory [14, 10] is no longer applicable and the Néel-Brown formula [5] for the mean
magnetization reversal time is not valid since there is no well-defined energy associated with
STT.

Nanomagnets typically operate in a regime where the nonconservative parts of the dynam-
ics, including the effects of damping, STT, and thermal noise, act on time-scales that are
much longer than that of the energy-conserving Hamiltonian part. Trajectories remain close
to periodic Hamiltonian orbits for a long time, and slowly drift from one orbit to another
due to damping, STT, and thermal noise. This separation of time scales can be exploited,
using averaging techniques developed by Freidlin and Wentzell [9, 8] (see also [20, 4]), to
reduce the dynamics to that of an energy diffusing on a graph. We show here that this
reduced description permits to explain the features of nanomagnets subject to STT that are
observed experimentally. Specifically, we obtain the full bifurcation diagram of the system at
zero temperature and determine the critical spin-polarized currents needed to induce stable
precessional states [15, 3] and magnetization switching [15, 19]. At finite temperature, we
calculate the mean times of thermally assisted magnetization reversals [15, 18], and give
expressions for the effective energy barriers conjectured to exist [15, 18, 1, 16, 17]. These
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results are complementary to those obtained in [6], using the geometrical Minimum Action
Method (gMAM) [11], for situations with small thermal noise and stronger damping.

We will focus on magnetic systems in which the magnetization has constant strength Ms

in the direction of a unit vector m(t) = (mx(t), my(t), mz(t)) whose evolution is governed
by

(1) ṁ = −m× heff +m× (m× (−αheff + aJmp)) .

This is the standard stochastic Landau-Lifshitz-Gilbert (LLG) equation written in non-
dimensional form (details of the nondimensionalization can be found in the Appendix A),
with an additional STT term, m×(m×aJmp), modeling the transfer of angular momentum
to the magnetization from the electron spin in a polarized current of strength aJ directed
along unit vector mp [21]. For simplicity, here we take mp = (1, 0, 0) and a constant
strength aJ , but these could straightforwardly be generalized to any direction and a time-
varying strength. The other terms in (1) are standard: α is the damping parameter and

heff = −∇mE +
√

2αǫ
1+α2η(t) is the effective field, which in turn is the sum of the negative

gradient of the energy per volume, E(m), and a term accounting for thermal effects with η(t)
being three-dimensional white-noise and ǫ = kBT/µ0M

2
s ν the non-dimensional temperature

(ν is the magnet volume and µ0 the permeability of free-space). Here we take E(m) =
βym

2
y + βzm

2
z −hxmx with βy < βz = 1/2, corresponding to biaxial anisotropy with a planar

applied field of amplitude hx in the x-direction.
The presence of the STT term in (1), which is nongradient and nonconservative, compli-

cates the analysis of this equation even in the absence of thermal noise (ǫ = 0). In particular,
the magnetic energy E(m) is not a Lyapunov function for the system, and it is unclear if
the STT term provides additional damping, driving, or something entirely different. To
understand the effect of this term, we take advantage of the separation of time scales that
arises when both the damping and the strength of the polarized current are weak, α ≪ 1
and aJ ≪ 1. In this regime, m moves rapidly along the energy conserving Hamiltonian
orbits in Fig. 1(a) and drifts slowly in the direction perpendicular to these orbits. This slow
motion can be captured by tracking the evolution of the energy E(m) along with an index to
distinguish between disconnected orbits with the same energy. This information is encoded
in the graph shown in Fig. 1(b), whose topology is directly related to the energy function,
E = βym

2
y + βzm

2
z − hxmx, and changes based on its form and values of parameters. For

example, when |hx| < 2βy the graph has four branches, as shown in Fig. 1(b), which meet
at the saddle point of the energy that corresponds to the homoclinic orbits connecting the
two green points on the surface of the sphere in Fig. 1(a). We will use the indexes 1 and 2
(3 and 4) for the lower (higher) energy branches in Fig. 1(b), which correspond to orbits on
the front-right and back-left (top and bottom) of the sphere in Fig. 1(a), respectively.

To deduce the effective dynamics on the graph when α and aJ are small, we follow Freidlin
and Wentzell [9] to remove the direct dependence on m(t) from Ė = ∇mE · ṁ by time-
averaging the coefficients in this equation over the Hamiltonian orbits of constant energy
depicted in Fig. 1(a). The resulting averaged equation for the energy on branch j is (see
Appx. B)

(2) Ė = −αAj(E) + aJBj(E) + 2αǫCj(E) +
√

2αǫAj(E)ξ(t),
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Figure 1. (color online) (a): Hamiltonian orbits (blue lines) of the unit mag-
netization vector solution of ṁ = −m×∇mE along with fixed points of this
equation that are also critical points of the energy: minima (red dots), saddle
points with energy Eb (green dots), and maxima (blue dots). (b) and (c):
Graphs (not drawn to scale) in which each energy point along the edges corre-
sponds to an orbit of m shown in (a) with this energy. The numbers indicate
the label for each energy branch. Branch 1: mx > −hx/2βy and E < Eb,
branch 2: mx < −hx/2βy and E < Eb, branch 3: mz > 0 and E > Eb and
branch 4: mz < 0 and E > Eb. The ends of each branch correspond to the
fixed points in (a) and the circles indicate the location and stability of the fixed
points of Ė = −αAj(E) + aJBj(E): filled circles are stable and open circles
are unstable. The graph in (b) corresponds to a situation where the energy
minima are stable fixed points. The graph in (c) is a representative case when
a solution of (4) exists, leading to a new stable fixed point at E = E0; this
new fixed point corresponds to a stable limit cycle like the one shown in red
in (a).

written in Ito’s form, where ξ(t) is a 1D white-noise and

(3)

Aj(E) = 4
(

β2
y

〈

m2
y

〉

j
+ β2

z

〈

m2
z

〉

j
− E2

)

− 4Ehx 〈mx〉j + h2
x

(

1−
〈

m2
x

〉

j

)

Bj(E) = 2E 〈mx〉j + hx

(

1 +
〈

m2
x

〉

j

)

Cj(E) = βy + βz − 3E − 2hx 〈mx〉j .

Here 〈·〉j denotes the time-average over one period along the orbit with constant energy E

corresponding to branch j of the graph in Fig. 1(b). As we show in the Appx. C, the averages
in (3) can be evaluated asymptotically near the critical points, and this information turns out
to be sufficient to calculate the bifurcation diagram and the mean times of magnetization
reversal that we obtain below. Away from the critical points, the averages (3) must be
evaluated numerically, which we do by using a symplectic implicit mid-point integrator to
evolve m via ṁ = m × ∇mE along an orbit with prescribed energy to compute the time
averages. Note also that (2) requires a matching condition where the branches on the energy
graph meet [9]; these conditions are discussed in the Appx. D.

Next we use the reduced equation (2) to obtain the bifurcation diagram of the system at

zero temperature, ǫ = 0, and determine the fixed points of Ė = −αAj(E) + aJBj(E) and
their stability. The coefficients Aj(E) and Bj(E) encode the separate effects of the damping
and the STT on the energy, respectively, and it can be checked that they are both zero at
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the critical points of the Hamiltonian. The energies at these points are

Ea,1 = −hx and Ea,2 = hx

corresponding to the two energy minima on the lower branches 1 and 2 where m = (±1, 0, 0),
respectively;

Eb = βy + h2
x/4βy

corresponding to the saddle point in energy where all four branches meet where m =

(−hx/2βy,±
√

1− h2
x/4β

2
y , 0); and

Ec = βz + h2
x/4βz

corresponding to the two energy maxima on the upper branches 3 and 4 where m =
(−hx/2βz, 0,±

√

1− h2
x/4β

2
z). These critical points can merge and disappear when the ap-

plied field crosses the critical values hx = ±2βy and hx = ±2βz. In addition, only the two
energy minima can ever be stable, and one of them looses stability when another nontrivial
fixed point in energy, E0, appears on one of the energy branches, where the energy lost by
damping, −αAj(E0), is exactly compensated by the energy gained by STT, aJBj(E0):

(4) −αAj(E0) + aJBj(E0) = 0.

The stable fixed point at E0 does not corresponds to a stable fixed point of the original
dynamics, but rather to a stable limit cycle (precessional state), see Fig. 1 for a schematic
illustration. The location and stability of the fixed points identified above are shown in
Fig. 2(a) as a function of aJ for a fixed value of hx, highlighting that magnetization reversal
can be achieved by varying the strength of the spin-polarized current, aJ .

We can also calculate the full bifurcation diagram shown in Fig. 2(b), which is remarkably
similar to the experimental one (see Fig. 2a in [15]). One of the energy minima looses its
stability and the precessional state appears when Ea,1 or Ea,2 solves (4), i.e. when aJ is given
by (j = 1, 2)

(5) aJ = α lim
x↓Ea,j

Aj(x)

Bj(x)
= ασj(βy + βz + σjhx),

where σ1 = 1 and σ2 = −1. The corresponding boundaries on the bifurcation diagram are
shown as dashed lines in Fig. 2(b). The limit in (5) was obtained using asymptotic expansions
of the coefficients; details can be found in the Appx. C.1. The precessional state exists in
the region between the dashed and the solid lines in Fig. 2(b). Beyond these solid lines only
one stable state remains. This occurs when Eb solves (4), meaning that the strength of the
current required to induce switching is (j = 1, 2)

(6)

aJ = α lim
x↑Eb

Aj(x)

Bj(x)
≡ λj

= ασj

4dj(β
2
z − β2

y)− bj(4β
2
y + h2

x)

σjbjhx + π
√

bjβy(1− h2
x/4β

2
y)

where bj = (
√

S/βz + σj(βz − βy)hx/2βyβx)
2, dj = 1 − (

√

S/βz − σjhx/2βz)
2, and S =

(βz − βy)(βz − h2
x/4βy); details can be found in the Appx. C.2.

Next we study thermally induced magnetization reversal. To this end we use the reduced
system in (2) with ǫ > 0 to calculate the mean transition times (i.e. dwell times) between the
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Figure 2. (color online) (a): Bifurcation diagram as a function of aJ at the
fixed value of hx = 80.64 G: the stable (solid line) and unstable (dashed line)

fixed points of Ė = −αAj(E) + aJBj(E) are shown for both energy branch
1 (blue) and 2 (red). (The remaining two unstable fixed point with higher
energy are not shown.) (b): Bifurcation diagram as a function of aJ and
hx (converted to units of Gauss by µ0Ms10

4, Ms = 954930 A/m, to easily
compare with experimental data shown in Fig. 2a in [15]). The dashed lines
on either side of region S correspond to the current required to first initiate a
stable precessional state (aJ given by (5)) while the solid lines correspond to
the current required to induce switching (aJ given by (6)). Beyond the solid
lines, only one stable fixed point remains: in region Tp (Tm) it is mx = +1
(mx = −1) and for hx beyond the region shown, only one lower energy branch
remains. The stars indicate where the mean thermally induced switching times
from branch 1 to 2 and branch 2 to 1, computed via (7), are equal. For both
figures, the values α = 0.003, βy = 0.0654, and βz = 0.5 are used.

stable fixed points of the deterministic dynamics identified before. The mean time τj(x) to
transition from energy x on branch j = 1, 2 to the fixed point on the other branch satisfies

(7)

[

− αAj(x) + aJBj(x)+2αǫCj(x)
]

τ ′j(x)

+ αǫAj(x)τ
′′
j (x) = −1

with a matching condition (see Appx. D) to prescribe transitions through the center node
of the graphs shown in Figs. 1(b), (c) as well as an absorbing condition at the target state.
Equation (7) is valid at any temperature and its solution can be expressed in terms of
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integrals involving the coefficients Aj(x), etc. Evaluating these integrals numerically leads
to the results shown in Fig. 5. We can also evaluate these integrals asymptotically in the
limit when the temperature is small (ǫ ≪ 1), in which case they are dominated by the
known behavior of the coefficients near the critical points. These calculations are tedious
but straightforward and reported in the Appx. E. In situations where the system transits
from the stable minimum Ea,1 or Ea,2 on branch 1 or 2 to the stable point (minimum Ea,2

or Ea,1 or precessional state E0) on the other branch we obtain (j = 1, 2)

(8) τj ∼
γj

γ1 + γ2

ǫ

α

e
(1−

aJ
λj

)(Eb−Ea,j)/ǫ

2(βy + βz ± hx)(1− aJ
λj
)2

whereas in situations when switching occurs from the stable precessional state E0 we obtain
(j = 1, 2 depending on whether E0 is on branch 1 or 2)

(9) τj ∼
γj

γ1 + γ2

ǫ

α

e
(1−

aJ
λj

)(Eb−E0)/ǫ

Aj(E0)(1− aJ
λj
)2
.

Here λj , defined in (6), is the critical current to induce switching at zero temperature, and

γ1 = 4d2(β
2
z − β2

y)− b2(4β
2
y + h2

x)

γ2 = 4d1(β
2
z − β2

y)− b1(4β
2
y + h2

x)

with bj and dj defined after (6). The results in (8) and (9) agree with the experimental
observations [15, 18] and the theoretical predictions [1, 17] that the effect of STT on the
dwell times can be captured via a Néel-Brown-type formula with an effective energy scaling
linearly with the current strength. We stress, however, that these previous theoretical works
had to assume the existence of such a formula, whereas (8) and (9) fall out naturally from
the asymptotic analysis, and give explicit expressions not only for the effective energy but
also the prefactors and their dependency on the strength of the current producing STT.

In summary, we have shown how the dynamical behavior of nanomagnets driven by spin-
polarized currents can be understood in the low-damping regime by mapping their evolution
to the diffusion of an energy on a graph. We thereby obtained the full bifurcation diagram of
the magnet at zero-temperature as well as the mean times of thermally assisted magnetization
reversal. These results agree with experimental observations and give explicit expressions
for the dwell times in terms of a Néel-Brown-type formula with an effective energy, thereby
settling the issue of the existence of such a formula. We carried the analysis for micromagnets
that are of the specific type considered by Li and Zhang [16], but the method presented in
this paper is general and can be applied to other situations with different geometry, applied
fields that are time-dependent or not, etc. It can also be applied to systems in which the
magnetization varies spatially in the sample. In these situations, the graph of the energy
will be more complicated, but the general procedure to reduce the dynamics to a diffusion
on this graph remains the same. Such a study will be the object of a future publication.

The research of E. V.-E. was supported in part by NSF grant DMS07-08140 and ONR
grant N00014-11-1-0345.
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Figure 3. (color online) Contour plot of the mean first passage time (con-
verted to seconds by γµ0Ms/(1 + α2), γ = 2.21 × 105 m/A·s, Ms = 954930
A/m) from the fixed point on energy branch j = 1, to the fixed point on branch
2. (The times from branch 2 to 1 would be the same figure, rotated 180◦.)
These times are computed using (7) and plotted as a function of hx (converted
to units of Gauss by µ0Ms10

4) and aJ . The shape of the plotted region is
identical to that shown in Fig. 2(b). Between the dashed line (aJ in (5)) and
solid black line (aJ in (6)), the starting point is E0 (Eq. (4)); everywhere else
it is the minimum energy, Ea,1. The values α = 0.003, ǫ = 0.01, βy = 0.654,
and βz = 0.5 are used. Switching times greater than 25 years are all colored
in dark red.

Appendix A. Nondimensionalization of the Governing Equation

We focus on magnetic systems of the type considered in Li and Zhang [16]. They consist
of a thicker fixed-magnetization layer, separated from a thinner layer whose magnetization
we wish to model. This free-layer’s magnetization vector M = (Mx,My,Mz), assumed to
have constant strength |M| = Ms (Ms is the saturation magnetization), is governed by the
(dimensional) stochastic Landau-Lifshitz-Gilbert (LLG) equation

(10)
dM

dt̃
= −γ∗M×Heff −

γ∗α

Ms

M× (M×Heff)

where γ∗ = γ/(1 + α2), γ is the gyromagnetic ratio (units rad/s·T) and α is the non-
dimensional Gilbert damping constant. The effective magnetic field (units T),

(11) Heff = −∇MẼ +

√

2αkBT

γMsν
η(t̃),

is the sum of the 3-component white noise, η(t̃), and the gradient of Ẽ, the energy per
unit volume (units N·m/m3). The noise amplitude, derived from the fluctuation-dissipation
theorem, will be discussed later, ν is the volume of the magnetic element, its temperature
is T , and the Boltzmann constant is kB = 1.38× 10−23N·m/K. The energy per unit volume
varies across different materials. Here, we use

(12) Ẽ = µ0Hext ·M+
µ0Hk

2Ms
M2

y +
µ0

2
M2

z ,
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the sum of the contributions from the external field, Hext, and the anisotropy in the magnet
along the y direction, given by Hk (hard axis z, easy axis x). The permeability of free space
is µ0 = 4π × 10−7 T·m/A.

In order to non-dimensionalize Eq. (10), we first writeM = Msm wherem = (mx, my, mz)

is a unit vector, Ẽ = µ0M
2
sE where E is the non-dimensional energy per volume, and

Heff = µ0Msheff. With these substitutions we obtain

(13)

dm

dt̃
= −γ∗µ0Msm× heff − γ∗µ0Msαm× (m× heff)

heff = −∇mE +

√

2αkBT

γµ0Msµ0M2
s ν

η(t̃)

E =
Hext

Ms
·m+

1

2

Hk

Ms
m2

y +
1

2
m2

z.

After non-dimensionalizing time to t = t̃/γ∗µ0Ms, the resulting non-dimensional equation is

(14)

dm

dt
= −m× heff − αm× (m× heff)

heff = −∇mE +

√

2αkBT

(1 + α2)µ0M2
s ν

η(t).

Note that the appearance of (1 +α2) was because γ, not γ∗ appeared in the denominator of
the white-noise amplitude factor.

To Eq. (14), we add the spin-transfer torque (STT) term, aJm × (m × mp), describing
the response of the system to a spin-polarized current with (non-dimensional) strength aJ
generated from the fixed magnetic layer, with magnetization unit vector mp. The non-
dimensional strength aJ = γ∗µ0η(θ)µBI/eν, contains the dependence on the current, I, and
the structure of the fixed and free magnetic layers through η(θ) = q/(A + B cos(θ)) where
cos(θ) = m · mp [21]. The current strength is divided by the volume, ν, of the free layer,
so as to produce a force per volume, matching the energy per volume contribution already
in Eq. (14). We take the value of aJ to be constant here, though our results could easily be
extended to the time-varying case.

For simplicity, we consider both the spin-polarized current direction, mp, and the external
field, Hext, to be directed along the x-axis: mp = (1, 0, 0) and Hext = (hxMs, 0, 0). The final
non-dimensional LLG equation that appears as Eq. (1) in the text is

(15)
dm

dt
= −m× heff −m× (m× (αheff − aJmp))

where heff = −∇mE +
√

2αǫ
1+α2η(t) with ǫ = kBT/µ0M

2
s ν and

(16) E = βym
2
y + βzm

2
z − hxmx

and where βy = Hk/2Ms < βz = 1/2. Recall that Ms is the constant amplitude of the
dimensional magnetization vector and ν the volume of the magnetic element.

We return to consider the amplitude of the noise,
√

2αǫ/(1 + α2) in Eq. (14), taken
from the paper by Kohn, Reznikoff and Vanden-Eijnden [13]. The parameter ǫ is the non-
dimensional temperature; it is the thermal energy, kBT , non-dimensionalized by µ0M

2
s ν,
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where ν is the volume of the magnet and µ0M
2
s is the energy per volume scaling. The α

appears in the noise term so that the equilibrium distribution is the Gibbs distribution,

ρ(m) = Z−1e−E(m)/ǫ,

where Z−1 is the normalization factor; it is the integral of e−E(m)/ǫ over the surface of the
m-sphere. This fact is shown in Appendix A of the paper by Kohn, Reznikoff and Vanden-
Eijnden [13]. It was done by switching to the (θ, z) representation of the magnetic vector to
represent this two degrees of freedom system by two variables. From the non-dimensional
form of the noise term, we worked backwards through the non-dimensionalization procedure
to obtain the dimensional noise amplitude in Eq. (10).

A.1. Converting to Ito form. We convert the Strotonovich SDE (15) into an Ito SDE,
which will be needed in the next section to determine the averaged evolution of the energy.
First, we write the Strotonovich SDE in the form

(17)
dm

dt
= ac − αad + aJap +

√

2αǫ

1 + α2
Bη(t)

where the conservative term is

ac =





2(βz − βy)mymz

−mz(2βzmx + hx)
my(2βymx + hx)





the damping term is

ad =





−hx(1−m2
x)− 2mx(βym

2
y + βzm

2
z)

my(hxmx + 2βy(1−m2
y)− 2βzm

2
z)

mz(hxmx − 2βym
2
y + 2βz(1−m2

z))





the spin-torque transfer term is

ap =





m2
x − 1

mxmy

mxmz





and the diffusion matrix is

B =





α(1−m2
x) mz − αmxmy −my − αmxmz

−mz − αmxmy α(1−m2
y) mx − αmymz

my − αmxmz −mx − αmymz α(1−m2
z)



 .

In order to convert to the Ito form, the drift term obtains the correction

aI =
2αǫ

1 + α2

1

2

∑

j,k

Bkj∂kBij = −2αǫm,

making the Ito SDE for the magnetization direction

(18)
dm

dt
= ac − αad + aJap − 2αǫm+

√

2αǫ

1 + α2
Bη(t).
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Appendix B. Energy Equation

Here, we derive the energy equation (2) in the text. Using the rules of Ito calculus, we

compute Ė = ∇mE · ṁ to obtain the Ito SDE for the evolution of the energy in the form

(19) Ė = −αA(m) + aJB(m) + 2αǫC(m) +
√
2αǫ
√

A(m)ξ(t),

where ξ(t) is 1D white noise, the strength of which is computed from the combination
of the three strengths of the three independent components of the white noise, η(t), in
Eq. (15). Notice since the term ac in Eq. (18) conserves energy, it has no corresponding
term in Eq. (19). The remaining terms in Eq. (18) have corresponding terms in Eq. (19):
the dissipative term, ad, leads to

A(m) = 4(β2
ym

2
y + β2

zm
2
z − E2)− 4Ehxmx + h2

x(1−m2
x),

the spin-torque transfer terms, ap, leads to

B(m) = 2Emx + hx(1 +m2
x),

and the correction term for Ito calculus (∂j indicates partial derivative with respect to the
jth element of m),

2αǫ

1 + α2

1

2

∑

i,j

[BBT ]ij∂i∂jE(m) = 2αǫ
(

βy(1−m2
y) + βz(1−m2

z)
)

,

together with the contribution from aI give

C(m) = βy + βz − 3E − 2hxmx.

The three separate contributions to the noise term,

bx(m) = 2(βz − βy)mymz − α[hx(1−m2
x) + 2mx(βym

2
y + βzm

2
z)]

by(m) = −mz(hx + 2βzmx) + α[hxmxmy + 2my(βy(1−m2
y)− βzm

2
z)]

bz(m) = hxmy + 2βymxmy + α[hxmxmz + 2mz(βz(1−m2
z)− βym

2
y)],

simplify so that
√

b2x + b2y + b2z =
√

(1 + α2)A(m). To remove the explicit dependence on the
magnetization vector m from Eq. (19), following Freidlin and Wentzell [9], we average the
coefficients appearing in the backwards Kolmogorov equation for SDE (19) over one period,
Tj(E), at constant energy,

〈f(m)〉j =
1

Tj(E)

∫ Tj(E)

0

f
(

m(t)
)

dt.

The subscript j = 1, 2, 3, 4 indicates that the average corresponds to one connected orbit of
m with constant energy E on branch j of the energy graph (Fig. 1(b) in the text). The
resulting averaged coefficient backwards Kolmogorov equation corresponds to the averaged
coefficient SDE (2) in the text.

Appendix C. Asymptotic Expansions of the Averaged Energy Coefficients

While explicit expressions for the averaged coefficients are unknown, we work out asymp-
totic expansions near the two minima and the saddle point of the energy. These expressions
show how the coefficients Aj(E) and Bj(E) go to zero near these points, and are used to
determine the accessibility of these critical points in energy. The expressions are also used
to determine the critical spin polarized current aJ for the emergence of a stable precessional
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state (Eq. (5) in the text), and for the critical current to induce switching of the magne-
tization vector (Eq. (6) in the text). In addition, they are used in Sec. D in determining
the switching probabilities between the lower energy branches and in Sec. E in asymptoticly
approximating the mean switching time.

C.1. Approximation Near the Minima. In order to determine the scaling of the averaged
coefficients A1(E), B1(E) and C1(E), near the energy minimum on branch 1, m0 = (1, 0, 0),
we create a series expansion about this point for the solution to the Hamiltonian system,

(20) ṁ = −m×∇E =





2(βz − βy)mymz

−mz(2βzmx + hx)
my(2βymx + hx)



 ,

then compute the averages exactly as a function of the energy. We consider the expansion
for m,

m = (1, 0, 0) + δm1 + δ2m2 +O(δ3),

(where the subscripts denote terms in the expansion, and not energy branches) and determine
the averaged coefficients up to O(δ2), requiring the first non-zero term above the zeroth term
for each component of m. This expansion must also satisfy |m|2 = 1 up to order δ2,

|m2| = (1 + δm1,x + δ2m2,x)
2 + δ2m2

1,y + δ2m2
1,z +O(δ3)

= 1 + 2δm1,x + δ2(m2
1,x + 2m2,x +m2

1,y +m2
1,z) +O(δ3).

To satisfy this constraint at O(δ), we must have that m1,x = 0, and then at O(δ2),

(21) m2,x = −1

2
(m2

1,y +m2
1,z).

The O(δ) expansion of the system (20) is

(22) ṁ1 =





0 0 0
0 0 −2βz − hx

0 2βy + hx 0



m1.

This is consistent with m1,x = 0 obtained from the length constraint on m above. The
remaining two components are

m1,y = c1 cosωt

m1,z = c1
ω

2βz + hx
sinωt

where ω =
√

(2βy + hx)(2βz + hx) and the O(δ) initial condition is assumed to be of the
form m1(0) = (0, c1, 0). No higher order terms are needed for the y and z components, but
we must consider the next order term for the x component.

For the component m2,x at O(δ2), the expansion of system (20) gives

ṁ2,x = 2(βz − βy)m1,ym1,z .

The solution to this is consistent with the definition of m2,x in (21) need to satisfy the length
constraint. By taking the derivative of m2,x given by (21),

ṁ2,x = −m1,yṁ1,y −m1,zṁ1,z,

and then substituting the O(δ) DEQ for ṁ1,y and ṁ1,z, we see that

ṁ2,x = 2(βz − βy)m1,ym1,z.



12 K. A. NEWHALL & E. VANDEN-EIJNDEN

Combining these results we have the expansions

mx ∼ 1− δ2
c21
2

[

cos2 ωt+
2βy + hx

2βz + hx
sin2 ωt

]

my ∼ δc1 cosωt

mz ∼ δc1

√

2βy + hx

2βz + hx
sinωt

where ω =
√

(2βy + hx)(2βz + hx). These solutions correspond to a trajectory with initial
condition (1− δ2c21/2, δc1, 0) and constant energy

(23) E = −hx + δ2c21(βy + hx/2).

To determine the averaged coefficients, we average the functions of m over one period,
T = 2π/ω (note that T does not depend on the energy in this expansion),

〈f(m)〉 = 1

T

∫ T

0

f(m(t))dt.

Taking c1 = 1 (without loss of generality), we have

〈mx〉 ∼ 1− δ2

4

(

1 +
2βy + hx

2βz + hx

)

〈

m2
x

〉

∼ 1− δ2

2

(

1 +
2βy + hx

2βz + hx

)

〈

m2
y

〉

∼ δ2

2
〈

m2
z

〉

∼ δ2

2

(

2βy + hx

2βz + hx

)

.

To write the averages in term of the energy, we solve for δ2 as a function of E from Eq. (23),

δ2

2
=

E + hx

2βy + hx
,

and obtain

(24)

A1(E) ∼ 2(βy + βz + hx)(E + hx)

B1(E) ∼ 2(E + hx)

C1(E) ∼ βy + βz + hx −
(

1 +
2βy

2βy + hx
+

2βz

2βz + hx

)

(E + hx).

These approximations are in good agreement with the numerically obtained averaged coeffi-
cients, shown in Fig. 4. The limit in Eq. (5) in the text is obtained from the ratio of A1(E)
to B1(E).

We repeat the above procedure for energy branch 2, where the minimum is m = (−1, 0, 0),
using the series expansion

m = (−1, 0, 0) + δm1 + δ2m2 +O(δ3).
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Figure 4. Comparison of the averaged energy equation coefficients on energy
branch 1 computed by averaging the numerically integrated trajectories given
by ṁ = −m × ∇E (blue solid line) to the asymptotic approximations in
Eq. (24) near the minimum energy (green dashed line) and the asymptotic
approximations in Eq. (36) near the saddle point in energy (cyan dash-dot
line) for non-zero hx. The values βy = 0.06, βz = 0.5 and hx = 0.03 were used.
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From the constraint on the length of m we similarly find that m1,x = 0 and

m2,x =
1

2
(m2

1,y +m2
1,z).

The O(δ) expansion of the Hamiltonian system has the solution

m1,y = cosωt

m1,z = −
√

2βy−hx

2βz−hx
sinωt ,

where ω =
√

(2βy − hx)(2βz − hx) and we have taken an O(δ) initial condition (0,1,0).
Combining and averaging as above, using

δ2

2
=

E − hx

2βy − hx

,

we obtain

(25)

A2(E) ∼ 2(βy + βz − hx)(E − hx)

B2(E) ∼ −2(E − hx)

C2(E) ∼ βy + βz − hx −
(

1 +
2βy

2βy − hx
+

2βz

2βz − hx

)

(E − hx)

for the averaged energy coefficients on energy branch 2. The limit in Eq. (5) in the text is
obtained from the ratio of A2(E) to B2(E).

C.2. Approximation Near the Saddle Point. We repeat a similar process to the one in
the above section, and determine the scaling of the period of the orbit, which goes to infinity
as the energy approaches its saddle point value, by again using a series expansion of the
solution. To determine the approximation of the averaged coefficients, we must also consider
their value along the entire orbit in order to compute the time-average integral. The integral
is dominated by the values the components of m take along the homoclinic orbit connecting
the two fixed points. We consider this integral last.

Orbits with either energy slightly less than or slightly more than the saddle point value,
Eb, spend the majority of their time near the two fixed points. To approximate the period,
we expand the solution of the Hamiltonian system, Eq. (20), about one fixed point and
determine the time it takes the trajectory to leave an O(1) size box around this fixed point.
We must handle the two cases, hx = 0 and hx 6= 0, separately, but in the end we obtain the
same scaling of the period with the energy in both cases.

First, we consider the simple case when hx = 0, and consider the expansion of the solution
about one of the fixed points, m0 = (0, 1, 0), in the form

m = (0, 1, 0) + δm1 + δ2m2 +O(δ3).

From the constraint on the length of the vector,

1 = |m|2 = 1 + 2δm1,y + δ2(2m2,y +m2
1,x +m2

1,y +m2
1,z) +O(δ3),

we see that at O(δ) it must be that m1,y = 0, and at O(δ2),

(26) m2,y = −1

2

(

m2
1,x +m2

1,z

)

.

The constant energy of this expansion can be found in terms of the initial conditions, and is

E = βy + 2βyδ
2m2,y(0) + βzδ

2m2
1,z(0) +O(δ3).
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Due to the constraint, we only need to find the O(δ) solutions, then construct m2,y from
Eq. (26).

The expansion of the Hamiltonian system (20) leads to the O(δ) set of equations,

ṁ1,x = 2(βz − βy)m1,z

ṁ1,y = 0

ṁ1,z = 2βym1,x ,

which is solved by

(27)

m1,x = coshωt

m1,z =
ω

2(βz − βy)
sinhωt

where ω2 = 4βy(βz − βy). We have used the initial conditions (δ, 1 − 1
2
δ2, 0) and find the

energy scales with δ as,

E = βy − βyδ
2 +O(δ3).

The approximate solutions (27) do not lead to complete orbits as in the previous section,
rather, we can estimate the period by computing the time for the trajectory to leave a box
around the saddle point. Specifically, we approximate the period as quadruple the time it
takes the mx component to increase to some O(1) value c away from its initial value. (We
would obtain the same scaling if we chose to use the mz component instead.) Note that we
are exploiting the symmetry of the system: there are two saddle points which the trajectory
spends equal time near, and the trajectory spends an equal amount of time entering the box
and traveling to the initial condition as it does leaving the box. Therefore, we wish to solve

δ cosh

(

ω
T

4

)

= c

for the period T , of the orbit, which we expect to be large. We approximate coshωT/4 =
(eωT/4 + e−ωT/4)/2 as eωT/4/2 and obtain

(28) T =
2

ω
log

1

δ2
+O(1) =

2

ω
log

1

Eb − E
+O(1),

where ω = 2
√

βy(βz − βy) and the saddle point energy, Eb = βy.
We repeat the above procedure for the second case, hx 6= 0. Again, we expand the solution

about the fixed point, (−a,
√
1− a2, 0) where a = hx/2βy, in the form

m = (−a,
√
1− a2, 0) + δm1 + δ2m2 +O(δ3).

This time, the constraint on the length leads to

1 = |m|2 = 1+δ(−2am1,x + 2
√
1− a2m1,y)

+ δ2(−2am2,x + 2
√
1− a2m2,y +m2

1,x +m2
1,y +m2

1,z) +O(δ3)

providing the requirements

(29)

m1,y =
a√

1− a2
m1,x

√
1− a2 m2,y = am2,x −

1

2
(m2

1,x +m2
1,y +m2

1,z).
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Although the O(δ) solution of my is no longer zero, these O(δ) terms do not contribute to
the value of the energy, and the solution to m2,x is required. The constant energy is again
obtained from the initial conditions of the solution, and is

E = βy

(√
1− a2+δm1,y(0)+δ2m2,y(0)

)2

+βzδ
2m2

1,z−hx(−a+δm1,x(0)+δ2m2,x(0))+O(δ3).

We see that the m2,z solution is not needed; it does not contribute to the O(δ2) expansion
of the energy.

The expansion of the Hamiltonian system (20) leads to the O(δ) set of equations,

ṁ1,x = 2(βz − βy)
√
1− a2 m1,z

ṁ1,y = −(−2aβz + hx)m1,z

ṁ1,z = 2βy

√
1− a2 m1,x ,

which are satisfied by
m1,x = coshωt

m1,z =
ω

2(βz − βy)
√
1− a2

sinhωt

where ω2 = 4βy(βz − βy)(1− a2). Note these solutions reduce to those in (27) when hx = 0
since a = 0 in this case. The O(δ2) expansion of the Hamiltonian system is,

ṁ2,x = 2(βz − βy)
√
1− a2 m2,z + 2(βz − βy)m1,ym1,z

ṁ2,y = −(2aβz + hx)m2,z

ṁ2,z = 2βy

√
1− a2 m2,x + 2βym1,xm1,y

which have the same general solution as the O(δ) equations, but an additional particular
solution to handle the non-homogeneous part. We only require the solution m2,x, since we
can then construct the needed m2,y solution from the length constraint (29). Taking another
derivative of the ṁ2,x equation, and inserting the equation for ṁ2,z, we use the method of
undetermined coefficients, and obtain the solution

m2,x = coshωt+
hx

4ω2

[

(βz − βy) cosh 2ωt+
1

2ω
sinh 2ωt

]

+
hx

2
(βz − βy)t

2.

The initial conditions at O(δ2) are

m2,x(0) = 1 +
hx

4ω2
(βz − βy)

√
1− a2 m2,y(0) = am2,x(0)−

1

2(1− a2)
.

Using these, we can construct the expansion of the energy, which after much simplification
reduces to

(30) E = Eb − δ2βy +O(δ3)

where the saddle point energy, Eb = βy +
h2
x

4βy
.

The leading order term of the mx component is again used to determine the scaling of the
period,

(31) T =
2

ω
log

1

δ2
+O(1) =

2

ω
log

1

Eb −E
+O(1)
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where ω2 = 4βy(βz − βy)(1− h2
x/4β

2
y) and Eb = βy +

h2
x

4βy
. This reduces to the period in (28)

when hx = 0. For all values of hx we can use (30) and (31) to describe the energy and period
near the saddle point in energy, Eb.

To finish the approximation of the averaged energy coefficients, we derive the pre-factors
for their 1/T (E) scalings. Recall that averages are defined as

〈f(m(t))〉 = 1

T (E)

∫ T (E)

0

f(m(t))dt

for trajectories confined to energy E. (Note we will continue to omit the subscripts denoting
energy branches as we only concern ourselves with branch 1 here.) Having already deter-

mined the scaling of T as E → Eb, we now turn to the integral
∫ T (E)

0
f(m(t))dt, which is

dominated by what happens on the homoclinic orbit with energy Eb. For the trajectories
of the components of m(t), we use an approximate trajectory that starts at t = 0 at the
point on the orbit midway between the two fixed points, where mz is positive and my = 0.
The trajectories are infinitely long and asymptotically approach the fixed points, therefore
we approximate

∫ T (E)

0

f(m(t))dt ∼ 4

∫ ∞

0

f(m(t))dt

and we take the averages to be approximated by

(32) 〈f(m(t))〉 ∼ 4

T (E)

∫ ∞

0

f(m(t))dt.

For the simple case when hx = 0, the exact solution to the Hamiltonian system is

(33)

mx(t) =

√

βz − βy

βz
sechν0t

my(t) = tanh ν0t

mz(t) =

√

βy

βz
sechν0t

where ν0 = 2
√

βy(βz − βy). Note, this also satisfies E = βy = βym
2
y + βzm

2
z and m2

x +m2
y +

m2
z = 1 due to the identity tanh2 x+ sech2x = 1. Using (32) to compute averages, we have

〈

m2
x

〉

∼ βz − βy

βz

4

log 1/δ
〈

m2
z

〉

∼ βy

βz

4

log 1/δ
〈

m2
y

〉

= 1−
〈

m2
x

〉

−
〈

m2
z

〉

∼ 1− 4

log 1/δ
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and the average energy coefficients are

(34)

A1(E) ∼ βy(βz − βy)
16

log 1/δ

B1(E) ∼ βy(βz − βy)

βz

4π

log 1/δ

C1(E) ∼ βz − 2βy.

For non-zero hx, an exact solution is unknown, but the components mx and mz are well
approximated by sech functions, with appropriate values to match the exact solution at t = 0
and as t → ±∞. These are

(35)

mx ∼ −hx

2βy
+ Axsechνt =

−hx

2βy
+

[
√

βz − βy

βz

(

1− h2
x

4βyβz

)

+
βz − βy

2βyβz
hx

]

sechνt

mz ∼ Azsechνt =

√

√

√

√1−
(

√

βz − βy

βz

(

1− h2
x

4βyβz

)

− hx

2βz

)2

sechνt

where

ν =

√

√

√

√4(βy − h2
x/4βz)(βz − βy) + hx

βz − βy

βz

√

4(βz − βy)(βz −
h2
x

4βy

)

was found by matching the second derivative at t = 0 to the second derivative found from the
Hamiltonian system. The coefficient Ax was found by noting thatmy(0) = 0 and then solving

βy + h2
x/(4βy) = βz(1 −m2

x(0))− hxmx(0) for Ax. Then, the coefficient Az =
√

1−m2
x(0).

These solutions are also consistent withmx(t) → −hx

2βy
andmz(t) → 0 as t → ∞. Furthermore,

the solutions in (35) reduce to the above exact solutions in (33) when hx = 0.
For computing the averages, we first note that

〈mx〉 =
−hx

2βy
+ Ax 〈sechνt〉

〈

m2
x

〉

=
h2
x

4β2
y

− hx

βy
Ax 〈sechνt〉 + A2

x

〈

sech2νt
〉

and
〈

m2
y

〉

= 1−
〈

m2
x

〉

−
〈

m2
z

〉

using the constraint that the magnetization vector has unit length. After computing the
approximate average defined in (32), we obtain

〈mx〉 ∼
−hx

2βy
+

2πAx

νT (E)

〈

m2
x

〉

∼ h2
x

4β2
y

− hx2πAx

βyνT (E)
+

4A2
x

νT (E)

〈

m2
z

〉

∼ 4A2
z

νT (E)

〈

m2
y

〉

∼ 1− h2
x

4β2
y

+

(

πhxAx

2βy

−A2
x − A2

z

)

4

νT (E)
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where T (E) ∼ − 2
ω
log(Eb −E) when Eb = βy + h2

x/4βy and ω = 2
√

(βy − h2
x/4βy)(βz − βy).

While the same procedure could be carried out again for energy branch 2, we point out that
due to symmetry in the system, we can write the averaged energy coefficients on energy
branch j = 1, 2 (denoted by subscripts) as

(36)

Aj(E) ∼ 4

νT (E)

[

4dj(β
2
z − β2

y)− bj(4β
2
y + h2

x)
]

Bj(E) ∼ 4

νT (E)

[

σjbjhx + π
√

bjβy

(

1− h2
x

4β2
y

)]

Cj(E) ∼ βz − 2βy +
h2
x

4βy
− 4

νT (E)
hx

√

bj ,

where

bj =

(
√

S

βz

+ σj(βz − βy)
hx

2βyβx

)2

dj = 1−
(
√

S

βz

− σj
hx

2βz

)2

ν2 = 4
Sβy

βz
+ hx(βz − βy)

√
S

βz
,

σ1 = 1 and σ2 = −1, and S = (βz − βy)(βz − h2
x/4βy). The approximation (36) are in

excellent agreement with the averages found via numerical integration, as can be seen in
Fig. 4. The limit in Eq. (6) in the text is obtained from the ratios of Aj(E) to Bj(E).

Appendix D. Matching Conditions

In this section, we derive the matching conditions for the mean first passage time equa-
tion (7) in the text. Matching conditions are required only at the saddle point where the
energy branches meet [9] because it is a regular boundary point (see [7] for boundary point
classification); it is accessible from the interior of each energy branch and the interior of
each energy branch is accessible from it. On the other hand, no additional boundary con-
ditions are required at the other ends of the energy branches, specifically the minima, as
these are entrance boundary points; the interior of the energy branches are accessible from
these points, but the expected passage time from the interior to these points is infinite. This
coincides with the diffusion of the magnetization vector on the surface of the unit sphere.
The original SDE for the magnetization vector contains no extra conditions prescribed at
the single points corresponding to the energy minima and maxima. The classification of
the boundary points was determined using the scalings of the averaged energy coefficients
derived in Sec. C, and testing the convergence of certain integrals [7].

From the matching conditions, we are able to construct the probabilities of the energy
switching from one branch to another (the matching conditions required to supplement
Eq. (2) in the text) as well as the pre-factors for the mean first passage times in Eqs. (8)
and (9) in the text describing the probability the system switches to the other lower energy
branch rather than return to the original one. The derivation is based on the conservation of
probability flux of the magnetization vector across the homoclinic orbit on the sphere with
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energy equal to the saddle point energy, Eb. For ease of notation, any function evaluated at
energy Eb should be interpreted as a limit as E → Eb from the interior of the energy branch.

Consider ρj(E, t) to be the probability density for the energy while on branch j, normalized
so that

∫ Eb

Ea,1

ρ1(E, t)dE +

∫ Eb

Ea,2

ρ2(E, t)dE +

∫ Ec

Eb

ρ3(E, t)dE +

∫ Ec

Eb

ρ4(E, t)dE = 1.

These density functions are continuous at the saddle point in energy:

ρ1(Eb, t) = ρ2(Eb, t) = ρ3(Eb, t) = ρ4(Eb, t).

The functions Aj(m(t)) are also continuous across the homoclinic orbit, therefore, if this
orbit is approached from the higher or the lower energy branches, we have that
∫ T1(Eb)

0

A1(m(t))dt+

∫ T2(Eb)

0

A2(m(t))dt =

∫ T3(Eb)

0

A3(m(t))dt+

∫ T4(Eb)

0

A4(m(t))dt

or equivalently

(37) T1(Eb)A1(Eb) + T2(Eb)A2(Eb) = T3(Eb)A3(Eb) + T4(Eb)A4(Eb).

This provides the understanding for why the flux of the total probability, Tj(E)ρj(E, t), and
not simply the averaged probability, ρj(E, t), is conserved across the homoclinic orbit.

The forward Kolmogorov equation for the total probability density, written in terms of
the flux, Jj [·], on each branch j = 1, 2, 3, 4, is

(38)
∂

∂t
Tj(E)ρj(E, t) = − ∂

∂E
Jj[Tj(E)ρj(E, t)]

where

Jj[Tj(E)ρj(E, t)] =
[

− αAj(E) + aJBj(E) + 2αǫCj(E)
]

Tj(E)ρj(E, t)

− αǫ
∂

∂E

(

Aj(E)Tj(E)ρj(E, t)
)

.

Analogous to Eq. (37), the conservation of probability flux across the homoclinic orbit pro-
vides the matching condition for Eq. (38):

(39) J1[T1(Eb)ρ1(Eb, t)] + J2[T2(Eb)ρ2(Eb, t)] = J3[T3(Eb)ρ3(Eb, t)] + J4[T4(Eb)ρ4(Eb, t)].

The differential equation (7) in the main text for the mean exit time, τj(E), from energy E,
comes from the backwards Kolmogorov equation; it uses the adjoint operator to the one in
(38). Therefore, Eq. (7)’s matching condition is the adjoint condition to the conservation of
probability flux, Eq. (39). After dividing by αǫ, the matching condition for Eq. (7) in the
text is

(40)
A1(Eb)T1(Eb)τ

′
1(Eb)+A2(Eb)T2(Eb)τ

′
2(Eb) =

A3(Eb)T3(Eb)τ
′
3(Eb) + A4(Eb)T4(Eb)τ

′
4(Eb).

This condition is equivalent to the condition stated by Fredlein and Wetzell [9].
From the exit time matching condition, (40), we derive the probabilities for the energy

to switch branches in order to complete the stochastic differential equation (2) in the text
describing the evolutions of the energy, as well as determine the pre-factor for the mean
switching times between meta-stable states appearing in Eqs. (8) and (9) in the text.

We define the notation P (j → k) to be the probability the energy switches from energy
branch j to energy branch k at the saddle point, Eb. In general, this probability is derived
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from the coefficients of the matching condition (40) by breaking the integral within the coeffi-
cients Aj(Eb) into the parts which lead to each of the other energy branches; these fractional
parts out of the whole integral yield the probabilities P (j → k). Further simplifications are
made by taking advantage of the symmetry of this particular magnetic system.

In general, the probability, P (j → k), to switch from branch j to branch k is

P (j → k) =

∫ Tj(Eb)

0
Aj(m(t))1k(m(t))dt

∫ Tj(Eb)

0
Aj(m(t))dt

where 1k(m(t)) = 1 if m(t) is closer to orbits in branch k than any of the other branches
besides the one in which it resides, and 0 otherwise. Immediately from Fig. 1(a) in the text,
we see that

(41a) P (1 → 2) = P (2 → 1) = P (3 → 4) = P (4 → 3) = 0

since 1k(m(t)) = 1 at only two individual points (at the green dots). Exploiting the sym-
metry about the mx-my plane, we have that

(41b) P (1 → 3) = P (1 → 4) =
1

2
,

(41c) P (2 → 3) = P (2 → 4) =
1

2
,

(41d) P (4 → 1) = P (3 → 1),

and

(41e) P (4 → 2) = P (3 → 2).

Using the above, we can rewrite

(41f) P (3 → 1) =
1/2

∫ T1(Eb)

0
A1(m(t))dt

1/2
∫ T1(Eb)

0
A1(m(t))dt+ 1/2

∫ T2(Eb)

0
A2(m(t))dt

=
g1

g1 + g2

where we define the notation

gj =

∫ Tj(Eb)

0

Aj(m(t))dt

for j = 1, 2. We can take

gj ≈ 4dj(β
2
z − β2

y)− bj(4β
2
y + h2

x),

coming from Sec. C.2 with out term 4/ν, since gj only appears as fractions. Similarly to
(41f), we have that

(41g) P (3 → 2) =
g2

g1 + g2
.

All together, the conditions (41) provide the switching probabilities for the stochastic energy
equation (2) in the text.

The mean first passage time calculation requires the probability the energy switches from
branch 1 to 2 or 2 to 1, which we can see from Eq. (41a) never happens along a direct path.
Rather, the energy must first switch to one of the two higher energy branches. Conditioning
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on which intermediate branch the energy switches to, we have that the probability the energy
switches from branch 1 to branch 2 is

P (switch from 1) = P (1 → 3)P (3 → 2) + P (1 → 4)P (4 → 2).

Using the simplified probabilities in (41), we have that

P (switch from 1) =
P (3 → 2)

2
+

P (3 → 2)

2
=

g2
g1 + g2

.

Similarly, the switching from energy branch 2 back to 1 is

P (switch from 2) =
g1

g1 + g2
.

To match the notation in the text, we define the switching probability from branch j to be

(42) P (switch from j) =
γj

γ1 + γ2

where γ1 = g2 and γ2 = g1. The probabilities in (42) are precisely the pre-factors in Eqs. (8)
and (9) in the text for the mean switching times.

Appendix E. Mean First Passage Time

In this section, we derive the mean first passage time equations (8) and (9) in the text.
Rather than solve Eq. (7) in the text, it is simpler to find the transition time from starting
point x on energy branch j = 1, 2 to the saddle point Eb, then account for the probability
to transition to the other branch, rather than return to the same well. We therefore find the
solution, τj(x), of

(43)
[

− αAj(x) + aJBj(x) + 2αǫCj(x)
]

τ ′j(x) + αǫAj(x)τ
′′
j (x) = −1

with absorbing boundary condition τj(Eb) = 0, and multiply it by the switching probability
in Eq. (42). First we consider the solution valid for any temperature, then consider the limit
of vanishing temperature.

The exact solution to (43) requires a second boundary condition. As x → Ea we know
from Sec. C.1 that Aj(x) → 0 and Bj(x) → 0, which leaves the condition

2αǫC(Ea)τ
′(Ea) = −1.

Using integrating factors, we integrate (43) twice and obtain

(44) τj(x) =
γj

γ1 + γ2

∫ Eb

x

(

1

2αǫ(βy + βz ± hx)
+

1

αǫ
Ij(y)

)

e(y−Ea+
aJ
α
Fj(y))/ǫ−Gj(y)dy

where

Ij(y) =

∫ y

Ea

1

A(z)
e−(z−Ea+

aJ
α
Fj(z))/ǫ+Gj(z)dz

and where

Fj(z) =

∫ z

Ea

Bj(t)

Aj(t)
dt and Gj(z) =

∫ z

Ea

2Cj(t)

Aj(t)
dt.

The expression for γj was described in the previous section; it is

g1 ≈ 4d2(β
2
z − β2

y)− b2(4β
2
y + h2

x)

g2 ≈ 4d1(β
2
z − β2

y)− b1(4β
2
y + h2

x)

where bj and dj are defined after Eq. (36).
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For vanishing temperature (ǫ → 0), rather than approximate (44) directly, we notice that
the solution has a boundary layer where the coefficients Aj(x) and Bj(x) go to zero: both
near x = Ea,j , the minimum (Ea,1 = −hx and Ea,2 = hx), and x = Eb, the saddle point in
energy. We match the solution coming out of the boundary layer near Eb to determine the
leading order expression for the mean first passage time from the meta-stable point. This
meta-stable point is either E0 > Ea,j for values of aJ when a stable limit cycle exits on branch
j or the minimum value, Ea,j . For simplicity of notation, we will drop the subscript j and
only consider j = 1. The solution for j = 2 is derived similarly.

First, we consider the boundary layer near Eb, and rescale the energy by ǫ defining ξ = (x−
Eb)/ǫ so that ξ → −∞ leaves the boundary layer. The rescaled equation for g(ξ) = τ(x(ξ))
is

[

− αA(x(ξ)) + aJB(x(ξ)) + 2αǫC(x(ξ))
]1

ǫ
g′(ξ) +

αǫ

ǫ2
A(x(ξ))g′′(ξ) = −1

which to leading order reduces to
[

−1 +
aJ
α

B(x(ξ))

A(x(ξ))

]

g′(ξ) + g′′(ξ) = 0

with boundary condition g(0) = 0. We then have that

g′(ξ) = c exp

[

ξ − aJ
α

∫ ξ

0

B(Eb + ǫz)

A(Eb + ǫz)
dz

]

and integrating again yields

g(ξ) = c

∫ ξ

0

exp

[

y − aJ
α

∫ y

0

B(Eb + ǫz)

A(Eb + ǫz)
dz

]

dy

where we have used the boundary condition g(0) = 0. By first expanding the integral in the
exponent in term of ǫ,

∫ y

0

B(Eb + ǫz)

A(Eb + ǫz)
dz =

∫ y

0

α

λ
+O(ǫ)dz ∼ α

λ
y,

where

λ = α lim
x↑Eb

A(x)

B(x)
= α

4d(β2
z − β2

y)− b(4β2
y + h2

x)

bhx + π
√
bβy

(

1− h2
x

4β2
y

)

is the critical spin-polarized current required to induce switching (obtained for the asymptotic
expansions in Sec. C.2), with b and d given by b1 and d1 after Eq. (36), we have that

g(ξ) = c

∫ ξ

0

e(1−aJ/λ)ydy =
c

1− aJ
λ

(

e(1−aJ /λ)ξ − 1
)

and therefore

(45) τ(x) ≈ c

1− aJ
λ

e(1−aJ /λ)(Eb−x)/ǫ

to leading order. We are left to determine the constant c. As we leave the boundary layer,

g(−∞) = c

∫ −∞

0

e(1−aJ /λ)ydy =
−c

1− aJ
λ

,

and we see the solution becomes constant. We turn to consider the full solution in the outer
region away from the boundary layer to match this constant.
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Returning to Eq. (43), and dividing by αǫA(x), we have

−1

ǫ

(

1− aJ
α

B(x)

A(x)
− ǫ

2C(x)

A(x)

)

τ ′(x) + τ ′′(x) =
−1

αǫA(x)
.

We rewrite this as

(46)
[

eΦ(x)/ǫτ ′(x)
]′
=

−1

αǫA(x)
eΦ(x)/ǫ

where
Φ(x) ≡ Φ0(x) + ǫΦ1(x)

= −x+
aJ
α

∫ x

∗

B(y)

A(y)
dy + ǫ

∫ Eb

∗

2C(y)

A(y)
dy

for some arbitrary point ∗. After integrating (46) from x0 to Eb we have

eΦ(Eb)/ǫτ ′(Eb)− eΦ(x0)/ǫτ ′(x0) =
−1

αǫ

∫ Eb

x0

1

A(y)
eΦ(y)/ǫdy.

The constant from (45), enters through τ ′(Eb) = g′(0)/ǫ = c/ǫ. Combining with the above
equation we have

(47) c = ǫτ ′(x0)e
−(Φ(Eb)−Φ(x0))/ǫ − 1

α

∫ Eb

x0

1

A(y)
e−(Φ(Eb)−Φ(y))/ǫdy.

The integral in (47) is dominated by what happens near x0, and we have two cases, the
first when x0 is the solution to −αA(x)+aJB(x) = 0 in which case A(x0) 6= 0, and the point
x0 is away from either boundary layer. The second is when x0 is the minimum, and 1/A(x)
must be canceled by the term generated from the integral of C(x)/A(x) in Φ(x). In either
case, we will need the expansion of

−(Φ0(Eb)− Φ0(x)) = Eb − x− aJ
α

∫ Eb

x

B(y)

A(y)
dy

in terms of ǫ defined by ξ = (x− Eb)/ǫ. We then have

−(Φ0(Eb)− Φ0(x)) = −ǫξ − aJ
α
[0 + ǫξ(−1)

α

λ
+O(ǫ2)] ∼ −(1− aJ

λ
)ǫξ.

When x0 is the solution to −αA(x0) + aJB(x0) = 0, the mean passage time, τ , is approx-
imately constant at x0 and therefore τ ′(x0) ≈ 0. The expansion of −(Φ1(Eb)− Φ1(x)) only
contributes higher order terms to the exponent, and

−1

α

∫ Eb

x0

1

A(y)
e−(Φ(Eb)−Φ(y))/ǫdy ≈ −1

α

∫ 0

−∞

1

A(x0)
e−(1−

aJ
λ
)ξǫdξ =

ǫ

α

1

A(x0)(1− aJ
λ
)
.

This, together with τ ′(x0) = 0, gives the constant in Eq. (45). Combining with the switching
probability factor, we have Eq. (9) in the text,

(48) τ(E0) ∼
γ1

γ1 + γ2

ǫ

α

1

A(E0)(1− aJ
λ
)2
e(1−

aJ
λ
)∆E/ǫ

where ∆E = Eb − E0 and E0 solves −αA(E0) + aJB(E0) = 0.
On the other hand when x0 = Ea, the expansion of −(Φ1(Eb) − Φ1(x)) includes a large

term near Ea. From the scalings worked out in Sec. C.1, we know 2C(x)/A(x) ∼ 1/(x−Ea),
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which produces a large term, log(x−Ea), in the expansion of −(Φ1(Eb)−Φ1(x)). Together
with the scaling A(x) ∼ 2(βy + βz + hx)(x−Ea) near Ea, we have

− 1

α

∫ Eb

Ea

1

A(y)
e−(Φ(Eb)−Φ(y))/ǫdy ≈ − 1

α

∫ Eb

Ea

e−(Φ0(Eb)−Φ0(y))/ǫ+log(x−Ea)

2(βy + βz + hx)(x−Ea)
dy

≈ − 1

α

∫ 0

−∞

e−(1−
aJ
λ
)ξ

2(βy + βz + hx)
ǫdξ =

ǫ

α

1

2(βy + βz + hx)(1− aJ
λ
)
.

For the term in (47) involving τ ′(Ea), we return to Eq. (43), where for x ≪ ǫ we have

2αǫC(x)τ ′(x) = −1

to leading order and therefore

τ ′(Ea) =
−1

2αǫC(Ea)
.

We then have

τ ′(Ea)e
−(Φ(Eb)−Φ(Ea))/ǫ ≈ lim

x→Ea

1

2αǫC(x)
e−(Φ0(Eb)−Φ0(x))/ǫ+log(x−Ea)

to leading order in the exponent, which goes to zero due to the log(x−Ea) term. Thus, the
τ ′(Ea) term does not contribute to the solution. Combining with the switching probability
factor, we have Eq. (8) in the text,

(49) τ(Ea) ∼
γ1

γ1 + γ2

ǫ

α

1

2(βy + βz + hx)(1− aJ
λ
)2
e(1−

aJ
λ
)∆E/ǫ

where ∆E = Eb −Ea. We compare this approximation to the exit time obtained by numer-
ically solving Eq. (43) in Fig. 5.
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[19] B. Özyilmz, Andrew D. Kent, D. Monsma, J. Z. Sun, M. J. Rooks, and R. H. Koch. Current-induced
magnetization reversal in high magnetic fields in co/cu/co nanopillars. Phys. Rev. Lett., 91(6):067203,
2003.

[20] Grigoris Pavliotis and Andrew Stuart. Multiscale Methods: Averaging and Homogenization. Springer,
2008.

[21] D. C. Ralph and M. D. Stiles. Spin transfer torques. J. of Magnetism and Magnetic Materials, 320:1190–
1216, 2008.


