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We present a generalization of the granocentric model m@gan [Clusekt al., Nature, 2009,460, 611-
615] that is capable of describing the local fluctuationgd@sot only polydisperse but also monodisperse
packings of spheres. This minimal model does not take intowat the relative particle positions, yet it
captures positional disorder through local stochasticgsses sampled by efficient Monte Carlo methods.
The disorder is characterized by the distributions of Igeabmeters, such as the number of neighbors and
contacts, filled solid angle around a central particle amdc#ll volumes. The model predictions are in
good agreement with our experimental data on monodisparskom close packings of PMMA particles.
Moreover, the model can be used to predict the distributidiscal fluctuations in any packing, as long as
the average number of neighbors, contacts and the packiotydin are known. These distributions give a
microscopic foundation to the statistical mechanics fraor& for jammed matter and allow us to calculate
thermodynamic quantities such as the compactivity in tresplspace of possible jammed configurations.

1 Introduction and Model through the distributions of local parameters, such
as the coordination number, neighbor number and
The study of random packings of particles has rethe cell volume of individual particles in a given
ceived much attention in recent years. Its interespacking. Experiments have measured these distri-
lies in uncovering possible packing geomettiés butions as a function of the packing protocol for
understanding the local and global properties of gragifferent particulate materials and thus tested theo-
ular material§ and glasse and solving practical retical approachés!4 Nevertheless, a microscopic
problem$. The diversity of theoretical approachesorigin for the statistical fluctuations in random pack-
to packing therefore spans from geometric modelings that bears out in experiments is still lacking in
ing® to analogies with glassésand the statistical the literaturé®.
mechanics of jammed matferThey seek to quan-  While some look to understand packing from a
tify randomness in packed particle configurationsnacroscopic “thermodynamic” viewpoiht®-18oth-
ers turn to local microscopic descriptidhg19.20
1 Electronic Supplementary Information (ESI) available: In a recent Worﬁg, we have developed a ‘granocen-

[Master equations for the new granocentric model as well a% . del that is able t t th tric fl
algorithms for generating statistics via Monte Carlo siaaul ric: modelthatis abie to capture the geometric fiuc-

tions]. See DOI: 10.1039/b000000x/ tuations inside a jammed polydisperse packing of
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and may even be applicable to the random structunerovements to model v1 introduce sufficient disor-
of liquids?223 For jammed frictionless systems, der into the model local cells to capture the distri-
the model includes the constraint that the averagbutions observed in monodisperse packings. The
number of contacting neighbors is six to satisfy themodel parameters can be directly compared with
isostatic conditioR*. Since the model does not ex- measurable quantities describing the experimental
plicitly take into account positional disorder in the packings.
packing, it can only be applied to systems whose Thislocal modelis tested against data from quasi-
polydispersity exceeds 10% in radfds In this pa- monodisperse packings of poly(methyl methacry-
per, we improve the physical assumptions and th&ate) (PMMA) particles, whose positions in 3D are
computational efficiency of the original granocen-imaged in the confocal microscope. The high reso-
tric model in order to capture the fluctuations inlution images allow for an estimation of coordina-
monodisperse 3D packings. tion number from the geometric particle overlaps,
A granocentric model (first proposed) looks ~ while measurements of the occupied solid angle on
at the packing from the viewpoint of a single parti- each particle further test the underlying assumptions
cle. Imagine that you take the place of a single paref the model. The agreement between the model
ticle in the bulk of the material. As you look out, and the experiment suggests that the model provides
your view of the system is blocked by the closesia valuable statistical tool for investigating packings
particles to you. A granocentric model describesn a wide range of applications. For example, we
the statistics of this first shell of neighbors with- extend the model predictions to the local fluctua-
out any consideration for other particles in the mations in monodisperse packings ranging from ran-
terial. Here, we build on the success of the origi-dom loose to random close packing fractibh&®2/
nal granocentric model which we refer to as versiorWithin the granular statistical mechanics framewtrk
1.0 (v1), and create a version 2.0 (v2) that is adthe model thus predicts the entrdfyand the com-
ditionally capable of describing monodisperse ranpactivity as a function of the global packing fraction
dom packings. Model v2 captures key physical in-and provides a way to map out a phase diagram of
gredients that go into packing particles: (1) filling jammed mattet®-2°. More generally, the model pa-
the available space around a single particle with neigdmeters are derived from three global quantities:
bors, (2) placing some of them in contact to en-average coordination number, number of neighbors
sure mechanical equilibrium and (3) approximat-and the packing fraction, such that the fluctuations
ing a volume for the local cell containing the cen-in any experimental packing with access to these
tral particle. Whereas model v1 treated these threguantities can be compared with the model predic-
steps sequentially and independently of one anothéions.
to facilitate analytic solutions, the new model com-
bines all the stages of the previous model into onq 1 Granocentric model v2
search algorithm to determine the parameters self-
consistently. This interdependence of the packind he local packing structure around a given central
stages implies that model v2 represents physical rarticle is modeled by a stochastic process to fill the
ality more accurately. For example the determina@vailable solid angle with neighbors, each neighbor
tion of neighbors in stage (1) previously implied is assigned a distance from the central particle and a
that they are all in contact with the central parti_definition for the cell volume is then proposed. The
cle, while model v2 creates a cell in which somedetails of this method appear in the online supple-
neighbors are in contact with the central particle andnentary material.
others are a given distance away. This and otherim- Each local cell in the model starts with a cen-
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solid angle, (Qot), filled by the neighbors. The
model therefore predicts the number of neighbors,
the number of contacts and the total filled solid an-
gle, Qiot, Of @ given central particle. Repeating this
process yields the statistical fluctuations of these pa-
rameters within the packing.

In order to define a cell volume for a central par-
ticle we consider the volume contribution from each
of its neighbors. Each neighbor occupies a solid an-
gle that defines a cone (see Fig. 1) from the center of
the central particle to the surface equidistant from
both particles (defined by the navigation m3p
Fig. 1 (color online) A visualization of the volume Summing over these volumes from all the neighbors
approximation for each neighbor in the granocentric ~ 9ives an estimate of the cell volume corresponding
model v2 described in Sec. 1.1. The cone represents thé the total filled solid angl€®,. However, in real
filled solid angle by the neighbor particle (large, blue  packings, cell volumes obtained by tessellation by
online, sphere). The volume contribution of this definition occupy all the solid angle around each
neighbor is the volume of the cone between the center particle, i.e. 41. To account for the void space be-
of the center particle (small, red online, sphere) and thetween neighboring particles when calculating cell
hyperbolic sheet (grey surface) defining the navigation yolumes we partition the remaining unfilled solid
map between the surfaces of the two spheres. angle (up to 41) between only the contacting neigh-

bors and accordingly augment their cone volume
ter particle with a radius chosen at random from th&ontributions to the cell. The cell volume is then
input distribution (often a histogram of the exper-defined as the sum of the volumes of the augmented
imental particle radii). Neighboring particles arecones contributed by all neighbors. While the solid
sequentially added one at a time, with radii cho-2ngles of the neighbors still sum @, the sum
sen from the same distribution as the center partiof the solid angles of their respective cones is 4
cle. Each neighbor is determined to be contacting i also implies that the central particle’s volume
with probability p, and otherwise placed a distance!S €xactly accounted for within the cell.
0 away from the central particle (chosen from a dis-
tribution with meand*). We also add the physical 1.2 Determining the model parameters
constra_lnt that at leagin nelghborlng partlclt_a_s are dl’he model relies on the knowledge of the particle
contacting to ensure local mechanical stability and . o :
exclude rattlers. Each neighboring particle then ocs' € distribution and employs th_r_ee adjustable con-
trol parameters: (1) the probability of contact with

cuples a given solid a.ngle, which is determlned. bséhe central particlep, (2) the solid angle threshold,
the radii of both the neighbor and the central particle. , .
, and (3) the average surface-to-surface distance

as well as the distana® between them. Neighbor- of non-contacting neighbors3*. Using the algo-

L;cg;tr[]):rst:)cl:gsaﬁr?eag g(randalllrll :;IS [\nbi)nrgi u?g;g?ti:rr?ithm described in Sec. 1.1 the model generates the
g g g obability distributions and therefore the average

a threshold valueQ*. The last added neighbor is Pr

included into the neighbor shell only half the time,\é?lssr?t;%grzle tﬂgrzgﬁrvz];unrﬁgl?o?};éhﬁlgur;%zrl
such that the physical interpretation of this thresh- - T 9

old corresponds approximately to the average totdl acking fractionp (approximated by the ratio of av-
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Fig. 2 (color online) The average number of neighbors,
(n)y, (top) and the global packing fractiop, (bottom)
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erage particle volume to average local cell volume).
In order to use the model to describe experimental
packings we optimize the model control parameters
to best match the experimental valuesmof, (z) and
the global densityp. A comparison of the experi-
mental distributions of the local parameters with the
model predictions serves as a test of the validity of
the model and its assumptions. Moreover, we check
whether the optimized control parametes Q*,
0*) correspond to their experimental counterparts.
Next, we describe the model in more detail and
present the dependence of the model parameters on
the experimental inputs. Although we are able to
write exact equations (found in Sec. A of the online
supplementary material) relating the model param-
eters to the output statistics, we find solving these
equations is difficult. Therefore, we resort to effi-
cient Monte Carlo simulations to create numerous
local cells and calculate the parameters. This way
we not only accurately obtain the mean quantities of
interest, but also the entire distributions for number
of neighbors, number of contacts, local cell volume,
local packing fraction, and filled solid angle.
Numerous techniques exist to optimize model
parameters. Here, we use a combination of reduc-
ing parameter space and the surface plots shown in
Fig. 2, generated with an efficient Monte Carlo al-
gorithm, to determine the optimal model control pa-
rameters. We begin by setting the control parameter,

p. to the valuep = ((2) — zmin)/({M) — Zmin), Where

generated by the granocentric model v2 as a function ofach cell must have at leasti, contacting neigh-

the model control parametef®” andd* (scaled by
average patrticle radius) while keepipg= 0.40. In

these generated surface plots the thick black contour
lines indicate where the average number of neighbors
(in the top plot) and global packing fraction (in the
bottom plot) match the experimental values

((n)y =14.4, ¢ = 0.636). These curves also appears in
the alternate plot as a dashed line.

bors. Then, we create the surface plots in Fig. 2: the
average number of neighbors (top) and the global
packing fraction (bottom) for various values Qf
andd*. Naively, one might generate each point with
its own set of Monte Carlo simulations, but we use
only one set of random numbers to generate the en-
tire surface (as described Secs. B and C of the online
supplementary material). The basic idea is to gen-
erate a databank of potential contacting and non-
contacting neighbors. Next, for each pair of model
parametersd*, Q*) the non-contacting neighbors
are pushed away from the surface so that the mean
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distance to the surface & and we then determine gle Qmax Which is a parameter in the model. Even
which neighbors fill the available solid angle up tothoughQmaxseems to be an approximate upper bound
Q*. From the generated surface plots (Fig. 2), wdor the total filled solid angle, it does not corre-
select the thick black contour lines along which thespond to a measurable quantity in a real packing;
average number of neighbors and global packing could be below 4t due to shielding of neighbors
fraction match the experimental valués)(= 14.4, ¢ = or above 4t because of overlapping solid angles.
0.636). This method identifies the model solutioninstead, model v2 replac€k,ax with the parameter
for Q* andd* as the pointin parameter space whereQ*, which corresponds roughly to the experimen-
the two lines that satisfy experimental constraintdally measured average total solid angle filled by the
cross. Finally, we compare the average number gbarticles, as shown in the figure.
contacts from the model to the average from the ex-  In the model v1 some of the allocated neighbors
perimental data, adjugtaccordingly, and repeat the are moved a distanceaway from the central parti-
above process until all three parameters are detecle to fit the global packing density. However, this
mined within desired tolerances. Note that&s process does not influence the number of neighbors
tends towards zero, the positional randomness desince the neighbor selection step is independent of
creases and leads to discrete integer solutions in thtte step to create the cell volume. In a real packing,
region of parameter space. the further away the neighbors are the less solid an-
gle they occupy and therefore more neighbors can
1.3 Comparison with the original granocentric ~ Pe fit around a given particle. Therefore, model v2
model includes an interdependence of all the parameters to
satisfy this physical constraint. This improvement
Given that the granocentric model v1 is successfuly the model leads to a much better agreement with
in describing polydisperse emulsion packings, wehe experimental distribution of total filled solid an-
first demonstrate the ability of model v2 to describeg|e’ as shown in Fig. 3(d). In conclusion, although
the same experimental packings and compare thgsth models capture the distributions mf z and
two methods. In Fig. 3 we show the confocal im-y iy polydiserse packings, the values of the model
age of a randomly packed polydisperse emulsioparameters differ because they are inter-related in

and the corresponding reconstructed image of thg,ode| v2 such that they have a stronger physical
droplet radii and centers, as describe®ift. Im-  pasis.

age analysis yields the number of neighbmreon-

tactszand the cell volum¥ for each particle in the . ) )
packing. Both the original granocentric model and2 Application to monodisper se packings
the one presented here are equally good at descritﬁ-

ing polydisperse packings in terms of the previousl)é_he gratrrl]ocen:rlc model \;1 usdes the S|zet (f[l;]strlfl_)u-t
measured distributions of, z andV, as shown in lon as the only source of randomness at the 1irs

Fig. 3(a), (b), and (c). Nevertheless, disagreemensttage of selecting neighboring particles, resulting in

between the original model and physical reality i<a delta function for the distribution of neighbors in

apparent in the distribution of the total filled solid :Ee monc;dlsrierse c_:tz_ase.lE_xpeélmelntgllyathls 'S r:;.)t
angle,Qio, around the central particle. The model € case due to posilional disorder. Indeed, monodis-

v1 consistently overestimat€o compared to ex- perse packings have been investigated by numeri-

perimental data, as shown in Fig. 3(d), because &al fs'mul?t'lfgs apd éegtperlrﬂe%tslonhpaglgglefhrang-
assumes that all neighbors are in contact with th&9 from ball bearnngs-1o cofioldal Spheres. 1he

central particle when filling the available solid an-Probability distribution of cell volumes is consis-
tent between various monodisperse random close
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Fig. 3 (top left) Confocal image and (top right) 3D reconstructarpolydisperse oil-in-water emulsion containing
~ 1500 droplets in a box of volume 6565 x 100um?. In the reconstruction, spheres are colored accordinggio th
radius, as indicated by the color bar, in units of averagaisadRemaining figures compare experimentally obtained
distributions to those created with the granocentric modéland v2: (a) probability a cell haneighbors, (by
contacts, (c) local cell volum in units of(r>3, and (d) cumulative distribution function for filled solicigle. Only

a single value o® = 0* (or & = d for v1) is used. For the new model, at least one contact isnedjto

accommodate the allocation of remaining solid angle in tilame calculation.
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packings, as shown in Fig. 4. To gain access to all : : :
the local parameters in experimental random close o
packings (RCP), we study the jammed structure of
fluorescently dyed athermal poly(methyl methacry-
late) (PMMA) particles, shown in Fig. 5 (top left). £ .|
The patrticles are sedimented under gravity and lu-
bricated by a refractive index matched suspending
medium that eliminates friction and renders the pack 2|
ing transparent for optical observation. We thus im- e : ‘ :
age a packing of over 6,000 particles, find each par- ° (V=Nm)/((¥) = Vinf
ticle’s location and size and reconstruct the origi-
r]al mage as shown in Fig. 5 (t(?p rlght). _TO elim- plotted as a function oV — Vi) /((V) — Vi) for various
inate the small amount of polydispersity in the ex-n,nodisperse data sets indicated in the figure legend.
periment, we only consider those particles Whosgjere, (v) is the average local cell volume obtained from
radii are(r) = 1.65um =+ 1%, which is the resolu- each data set ang, characterized the minimum local
tion of our particle finding algorithm. We are justi- cell volume, for the PMMA data it is the minimum

fied in taking such a subset of particles as we findiolume of the data set as the theoretical minimum is
this sampling does not bias the measurable globainknown due to some polydispersity.

guantities such as the average coordination num-

ber, the average number of neighbors, or the global . .
: . . : Sense because the contact distribution is dominated
packing fraction from the original data set with all

particles. The experimental packings are analyse%y the probabilityp of choosing contacts among

. - neighbors, present in both models.
to obtain local cell statistics (cell volume and near- eighbors, prese bo odels

: . . . Since both granocentric models do not predict
est neighbors) by computing a Voronoi tessellation, e :
a smooth distribution of volumes seen in the exper-

Contacts are determined as those with a surfacee,o o gata in Fig. 4, further sources of random-

to-surface distance below a set resolution tolerancrt?eSS need to be introduced. A fixed valudot &*

(0.04 times the particle radius). Since the distribu, . : .
: . o ... for the non-contacting neighbors leads to each pair
tion of Voronoi volumes is in good agreement with

previously published monodisperse RCP results, a%f n neighbors and contacts having the same vol-

o . me and hence a discrete volume distribution. The
shown in Fig. 4, we next compare the experimenta ase of implementation of the models via Monte
distributions of Ioc_al parameters to those generateﬁarlo simulations allows us to add positional ran-
by t,zﬁo?/\:?r\réozzzglz(r)nn?gg:iécting neighbor in the dor_nness by choosing_ delta from a probability distri-
model v2 to be assigned a surface-to-surface di bution rathe_r than a_sm_gle _value. The model allows

Jor any choice of distribution, but we resort to a

tanced = &* replaces the delta function predicted P . .
o ) beta distribution with density(2— &/35*) /35" for
by model v1 by a broader distribution of nelghbors0 < 5 < 35" and zero otherwise. This distribution

that is closer to that observed in the experiment, a8 s meard* and does approximate the experimen-

shown in Fig. 5(a). Moreover, this positional dis- tal distribution of surface-to-surface distance, while

order also describes the distribution of filled solid - ) : .
. . the optimized parameter* aligns beautifully with
angle (data not shown), as in the polydisperse casg. . N
e experimental average, as shown in Fig. 5(c). Us-

On the other hand, the distributions of contacts are . o [
. ing the actual experimental distribution fdris just
In good agreement between the two models, and a%s successful at reproducing the local fluctuations
curately describe the data (Fig. 5(b)). This makes P g ’

—R. Kurita et %F
—T. Aste et af

- - =PMMA data
-.-.A. Donev et af

Fig. 4 Distributions of the Voronoi cell volumey,,
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therefore we use the minimal input needed to agreside the packing using only global quantities as an
with experiments. input.

The additional randomness in the surface-to-surfacelere, the granocentric model is used to describe
distance broadens the neighbor distribution for modewide range of monodisperse packings and to com-
v2, making it a closer match to the experimentalpare the results with existing theoretical approaches
data (Fig. 5(a)). For the model v1, this additionalto jammed matter. In order for the model to work,
positional randomness does not affect the neighbdhe user inputgn), (z) and g for the packing of in-
nor the contact distributions but it does smooth outerest. We first generate the distribution of local cell
the volume distribution. However, this volume dis- volumes at the random loose packing (RLE)) (=
tribution is too broad compared to the experimenl4, (z) = 4, ¢ ~ 0.53) and at the RCP(if) = 14,
tal data. By contrast, model v2 predicts a smoothz) = 6, ¢ ~ 0.64) limits for comparison, shown in
volume distribution in excellent agreement with theFig. 6(a). The loose configurations have larger cell
experimental data, as shown in Fig. 5(d). volumes with a broader distribution than the RCP

In conclusion, model v2, with the chosen betaconfigurations. This decrease in the standard devia-
distribution, captures the distributions of the num-tion between RLP and RCP has been observed in
ber of neighbor and contacts, as well as the fillecexperimental packing§2/2%3"and indicates that
solid angle and the local cell volume distribution inthe number of possible local configurations also de-
monodisperse packings. Although this is an mini-creases.
mal model, it accurately captures the fluctuationsin It is also interesting to relate the granocentric
real systems. model to Edwards’ statistical mechanics framewbork
for granular matter. Working under the hypothesis
that packings occupying the same total volume have
) the same macroscopic properties, Edwards proposed
INgS to describe a randomly packed state using thermo-

dynamic quantities that are analogous to those used

The granocentric model v2's success of describing, thermal systems: the system volume replaces the

the monodisperse packing at the random close pac'é'nergy, and the compactivity replaces the temper-

ing (RCP) limit in Sec. 2 leads us to use this modeky e “\within this framework, a key quantity is the
to generate random configurations within a hypoq ivalent of the Gibbs entropy of the packing, which

thetical phase space of jammed states. The way iy nts the number of microscopic configurations with
which particles pack is influenced by many param-

, , - o a given total volume. While the Gibbs entropy is
eters, such as polydispersity, friction, rigidity, and

; o not accessible to the granocentric model since it re-
the protocol by which the packing is created. Glob- jires the knowledge of the joint probability distri-

ally, these parameters change the density at whicl o, of the volumes of all the cells in the packing,

the particles pack and the average number of cong approximation by the Boltzmann entropy can be
tacts between them, thus defining a phase space Rafadily calculated from

jammed configurations accessible to real packings.
For example, monodisperse particles are known to
pack between random loose and random close pack-
ing densities depending on the friction coefficight® 3 , .
or the packing protoc8I®6. No matter how a pack- Wherep(_\/) denotes _the prot_)ablllty density of a sin-
ing is generated experimentally, our granocentri@!€ Cell in the packing. It is well-known that the
model can be used to generate the fluctuations irE°ltZmann entropy in Eq. (1) is a good approxima-

tion of the Gibbs entropy if correlations between the

3 Phasespaceof jammed random pack-

S=— [ p(V)logp(v)av )
0
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Fig. 5 (top left) Confocal image and (top right) 3D reconstructa@rmonodisperse PMMA patrticles containing

~ 6000 particles in a box of volume 3070 x 35um?®. In the reconstruction, spheres are colored accordinggio th
radius, as indicated by the color bar, in units of averagaisadRemaining figures compare experimentally obtained
distributions to those created with the granocentric modé&land v2: (a) probability a cell hasneighbors, (bk
contacts, (c) cumulative distribution function for thefawe-to-surface distancé, in units of(r), and (d)

probability distribution function for local cell volum¥,, in units of<r>3. In granocentric models with “A” only one
value ofd = &* (or & = d for v1) is used, while in models with “B” the value &fis chosen from the prescribed beta
distribution. For all models, a minimum of 3 contacts areuregg to align with the experimental data.
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cells are weak (in the standard equilibrium sta-
tistical framework this approximation becomes ex-

act in the limit of an ideal gas), which is consistent
with the local viewpoint taken in the granocentric
| ‘ TR therefore map out the dependencé&oh the global
0147 EEERCP grano v2 quantities(z) andg, as shown in Fig. 6(b). In these
- - ~RCP match calculations, we fixedn) = 14 as measured for the
monodisperse RCP case because it does not change
The range ofz) is chosen to be between 4 and 6 be-
, cause these values correspond to the isostatic con-
U
6

B RLP grano v2 model. Using this model to estimaf¥V) we can
——RCP MLE
significantly between different packing densifiés
dition in the limits of infinite and zero friction, re-

spectively. The range ap is chosen from below
Volume RLP atg = 0.45, since colloidal gels are known to
(©)s jam at arbitrarily low value¥®, to the RCP value of
¢ ~ 0.64 to avoid crystallization. The granocentric
model captures the general trend that is also seen in
the literature:S decreases with increasing packing
density!”2% Moreover,S increases with the aver-
age coordination number at a given density, consis-
tent with the fact that there are more ways to choose

4
0.45 0.5 %5

Fig. 6 Using the granocentric model v2 with the 6 rather than 4 contacts out of the set of 14 neigh-
prescribed beta distribution fér we generate local cell pors.

volume statistics. (a) The distributions of cell volumes Wlthln Edwards’ Statlstlcal mechanlcs framewa’rk
along with two different fittings of th&-gamma the entropy can be related to the compactivityas
distribution, Eq. 3, at both the random loose packing

(RLP) limit and the random close packing (RCP) limit. Xfl = 0S/ov* (2)

The scale and shape parameters ofidgamma
distribution are found using the maximum likelihood ~ Wherev* = (V) =V,/¢@ is the average cell volume
measurement (MLE) as well as by matching the mean andV, is the particle volume. Using formula (2)
and standard deviation of the distributions (match). Thewith (n) = 14 fixed and(z) and ¢ ranging between
inset depicts the values of the shape paramktevera 4 and 6 and 0.45 to 0.64, respectively, gives the
range of packing densities between RLP and RCP. (b result shown in Fig. 6(c) which indicates that the
and c) We create packings over a spectrum of packing granocentric model captures our physical intuition
densities and average number of contacts while keepingypot compactivity. States with lower density have
the average number of neighbors constapt at 14. From higher compactivity, and therefore a greater ability
these model generated volumes we obtain (b) the to compactify further. Similarly states with fewer
Boltzmann entropy of the. p_acklng using Eq. (1) and contacts have higher compactivity than states with
compute (c) the compactivity, using Eg. (2). Note .
thatx is given in units oV, = 41/3 ~ 4.2. the same d_enS|ty and mqre cont_acts. L
Interestingly, measuring relative compactivity via
Eq. (2) circumvents assuming a specific distribution
for the volume but permits to test various distribu-
tions that have been proposed in the literature. For
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example, a popular model is thegamma distribu- of granular materials. Furthermore, we make pre-
tion proposes it which assumes that the volume dictions of a plausible phase diagram of jammed

fluctuations are described by matter according to a statistical mechanics frame-
( et work, with which future experiments can be readily
K (V—=Vm)* V —Vm compared
V)= exp| —k——— P '
PV) = D1 v — VK Xp( V' Vi)’
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