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We present a generalization of the granocentric model proposed in [Cluselet al., Nature, 2009,460, 611-
615] that is capable of describing the local fluctuations inside not only polydisperse but also monodisperse
packings of spheres. This minimal model does not take into account the relative particle positions, yet it
captures positional disorder through local stochastic processes sampled by efficient Monte Carlo methods.
The disorder is characterized by the distributions of localparameters, such as the number of neighbors and
contacts, filled solid angle around a central particle and the cell volumes. The model predictions are in
good agreement with our experimental data on monodisperse random close packings of PMMA particles.
Moreover, the model can be used to predict the distributionsof local fluctuations in any packing, as long as
the average number of neighbors, contacts and the packing fraction are known. These distributions give a
microscopic foundation to the statistical mechanics framework for jammed matter and allow us to calculate
thermodynamic quantities such as the compactivity in the phase space of possible jammed configurations.

1 Introduction and Model

The study of random packings of particles has re-
ceived much attention in recent years. Its interest
lies in uncovering possible packing geometries1,2,
understanding the local and global properties of gran-
ular materials3 and glasses4, and solving practical
problems5. The diversity of theoretical approaches
to packing therefore spans from geometric model-
ing6 to analogies with glasses4 and the statistical
mechanics of jammed matter3. They seek to quan-
tify randomness in packed particle configurations
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through the distributions of local parameters, such
as the coordination number, neighbor number and
the cell volume of individual particles in a given
packing. Experiments have measured these distri-
butions as a function of the packing protocol for
different particulate materials and thus tested theo-
retical approaches7–14. Nevertheless, a microscopic
origin for the statistical fluctuations in random pack-
ings that bears out in experiments is still lacking in
the literature15.

While some look to understand packing from a
macroscopic “thermodynamic” viewpoint3,16–18oth-
ers turn to local microscopic descriptions6,14,19,20.
In a recent work19, we have developed a ‘granocen-
tric’ model that is able to capture the geometric fluc-
tuations inside a jammed polydisperse packing of
spheres using the particle size distribution as the
dominant source of randomness. This granocentric
model is based on geometry alone and has also been
shown to describe an unjammed system of disks21
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and may even be applicable to the random structure
of liquids22,23. For jammed frictionless systems,
the model includes the constraint that the average
number of contacting neighbors is six to satisfy the
isostatic condition24. Since the model does not ex-
plicitly take into account positional disorder in the
packing, it can only be applied to systems whose
polydispersity exceeds 10% in radius25. In this pa-
per, we improve the physical assumptions and the
computational efficiency of the original granocen-
tric model in order to capture the fluctuations in
monodisperse 3D packings.

A granocentric model (first proposed in19) looks
at the packing from the viewpoint of a single parti-
cle. Imagine that you take the place of a single par-
ticle in the bulk of the material. As you look out,
your view of the system is blocked by the closest
particles to you. A granocentric model describes
the statistics of this first shell of neighbors with-
out any consideration for other particles in the ma-
terial. Here, we build on the success of the origi-
nal granocentric model which we refer to as version
1.0 (v1), and create a version 2.0 (v2) that is ad-
ditionally capable of describing monodisperse ran-
dom packings. Model v2 captures key physical in-
gredients that go into packing particles: (1) filling
the available space around a single particle with neigh-
bors, (2) placing some of them in contact to en-
sure mechanical equilibrium and (3) approximat-
ing a volume for the local cell containing the cen-
tral particle. Whereas model v1 treated these three
steps sequentially and independently of one another
to facilitate analytic solutions, the new model com-
bines all the stages of the previous model into one
search algorithm to determine the parameters self-
consistently. This interdependence of the packing
stages implies that model v2 represents physical re-
ality more accurately. For example the determina-
tion of neighbors in stage (1) previously implied
that they are all in contact with the central parti-
cle, while model v2 creates a cell in which some
neighbors are in contact with the central particle and
others are a given distance away. This and other im-

provements to model v1 introduce sufficient disor-
der into the model local cells to capture the distri-
butions observed in monodisperse packings. The
model parameters can be directly compared with
measurable quantities describing the experimental
packings.

This local model is tested against data from quasi-
monodisperse packings of poly(methyl methacry-
late) (PMMA) particles, whose positions in 3D are
imaged in the confocal microscope. The high reso-
lution images allow for an estimation of coordina-
tion number from the geometric particle overlaps,
while measurements of the occupied solid angle on
each particle further test the underlying assumptions
of the model. The agreement between the model
and the experiment suggests that the model provides
a valuable statistical tool for investigating packings
in a wide range of applications. For example, we
extend the model predictions to the local fluctua-
tions in monodisperse packings ranging from ran-
dom loose to random close packing fractions11,26,27.
Within the granular statistical mechanics framework3,
the model thus predicts the entropy28 and the com-
pactivity as a function of the global packing fraction
and provides a way to map out a phase diagram of
jammed matter18,29. More generally, the model pa-
rameters are derived from three global quantities:
average coordination number, number of neighbors
and the packing fraction, such that the fluctuations
in any experimental packing with access to these
quantities can be compared with the model predic-
tions.

1.1 Granocentric model v2

The local packing structure around a given central
particle is modeled by a stochastic process to fill the
available solid angle with neighbors, each neighbor
is assigned a distance from the central particle and a
definition for the cell volume is then proposed. The
details of this method appear in the online supple-
mentary material.

Each local cell in the model starts with a cen-
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Fig. 1 (color online) A visualization of the volume
approximation for each neighbor in the granocentric
model v2 described in Sec. 1.1. The cone represents the
filled solid angle by the neighbor particle (large, blue
online, sphere). The volume contribution of this
neighbor is the volume of the cone between the center
of the center particle (small, red online, sphere) and the
hyperbolic sheet (grey surface) defining the navigation
map between the surfaces of the two spheres.

ter particle with a radius chosen at random from the
input distribution (often a histogram of the exper-
imental particle radii). Neighboring particles are
sequentially added one at a time, with radii cho-
sen from the same distribution as the center parti-
cle. Each neighbor is determined to be contacting
with probability p, and otherwise placed a distance
δ away from the central particle (chosen from a dis-
tribution with meanδ ∗). We also add the physical
constraint that at leastzmin neighboring particles are
contacting to ensure local mechanical stability and
exclude rattlers. Each neighboring particle then oc-
cupies a given solid angle, which is determined by
the radii of both the neighbor and the central particle
as well as the distanceδ between them. Neighbor-
ing particles are added in this manner until the sum
of the solid angle from all neighbors is greater than
a threshold value,Ω∗. The last added neighbor is
included into the neighbor shell only half the time,
such that the physical interpretation of this thresh-
old corresponds approximately to the average total

solid angle,〈Ωtot〉, filled by the neighbors. The
model therefore predicts the number of neighbors,
the number of contacts and the total filled solid an-
gle, Ωtot, of a given central particle. Repeating this
process yields the statistical fluctuations of these pa-
rameters within the packing.

In order to define a cell volume for a central par-
ticle we consider the volume contribution from each
of its neighbors. Each neighbor occupies a solid an-
gle that defines a cone (see Fig. 1) from the center of
the central particle to the surface equidistant from
both particles (defined by the navigation map30).
Summing over these volumes from all the neighbors
gives an estimate of the cell volume corresponding
to the total filled solid angleΩtot. However, in real
packings, cell volumes obtained by tessellation by
definition occupy all the solid angle around each
particle, i.e. 4π . To account for the void space be-
tween neighboring particles when calculating cell
volumes we partition the remaining unfilled solid
angle (up to 4π) between only the contacting neigh-
bors and accordingly augment their cone volume
contributions to the cell. The cell volume is then
defined as the sum of the volumes of the augmented
cones contributed by all neighbors. While the solid
angles of the neighbors still sum toΩtot, the sum
of the solid angles of their respective cones is 4π .
This also implies that the central particle’s volume
is exactly accounted for within the cell.

1.2 Determining the model parameters

The model relies on the knowledge of the particle
size distribution and employs three adjustable con-
trol parameters: (1) the probability of contact with
the central particle,p, (2) the solid angle threshold,
Ω∗, and (3) the average surface-to-surface distance
of non-contacting neighbors,δ ∗. Using the algo-
rithm described in Sec. 1.1 the model generates the
probability distributions and therefore the average
values for the number of neighbors,n, the number
of contacts,z, the cell volumes,V , and the global
packing fractionφ (approximated by the ratio of av-
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Fig. 2 (color online) The average number of neighbors,
〈n〉, (top) and the global packing fraction,φ , (bottom)
generated by the granocentric model v2 as a function of
the model control parametersΩ∗ andδ ∗ (scaled by
average particle radius) while keepingp = 0.40. In
these generated surface plots the thick black contour
lines indicate where the average number of neighbors
(in the top plot) and global packing fraction (in the
bottom plot) match the experimental values
(〈n〉= 14.4,φ = 0.636). These curves also appears in
the alternate plot as a dashed line.

erage particle volume to average local cell volume).
In order to use the model to describe experimental
packings we optimize the model control parameters
to best match the experimental values of〈n〉, 〈z〉 and
the global density,φ . A comparison of the experi-
mental distributions of the local parameters with the
model predictions serves as a test of the validity of
the model and its assumptions. Moreover, we check
whether the optimized control parameters (p, Ω∗,
δ ∗) correspond to their experimental counterparts.

Next, we describe the model in more detail and
present the dependence of the model parameters on
the experimental inputs. Although we are able to
write exact equations (found in Sec. A of the online
supplementary material) relating the model param-
eters to the output statistics, we find solving these
equations is difficult. Therefore, we resort to effi-
cient Monte Carlo simulations to create numerous
local cells and calculate the parameters. This way
we not only accurately obtain the mean quantities of
interest, but also the entire distributions for number
of neighbors, number of contacts, local cell volume,
local packing fraction, and filled solid angle.

Numerous techniques exist to optimize model
parameters. Here, we use a combination of reduc-
ing parameter space and the surface plots shown in
Fig. 2, generated with an efficient Monte Carlo al-
gorithm, to determine the optimal model control pa-
rameters. We begin by setting the control parameter,
p, to the valuep = (〈z〉− zmin)/(〈n〉− zmin), where
each cell must have at leastzmin contacting neigh-
bors. Then, we create the surface plots in Fig. 2: the
average number of neighbors (top) and the global
packing fraction (bottom) for various values ofΩ∗

andδ ∗. Naively, one might generate each point with
its own set of Monte Carlo simulations, but we use
only one set of random numbers to generate the en-
tire surface (as described Secs. B and C of the online
supplementary material). The basic idea is to gen-
erate a databank of potential contacting and non-
contacting neighbors. Next, for each pair of model
parameters (δ ∗, Ω∗) the non-contacting neighbors
are pushed away from the surface so that the mean
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distance to the surface isδ ∗ and we then determine
which neighbors fill the available solid angle up to
Ω∗. From the generated surface plots (Fig. 2), we
select the thick black contour lines along which the
average number of neighbors and global packing
fraction match the experimental values (〈n〉=14.4,φ =
0.636). This method identifies the model solution
for Ω∗ andδ ∗ as the point in parameter space where
the two lines that satisfy experimental constraints
cross. Finally, we compare the average number of
contacts from the model to the average from the ex-
perimental data, adjustp accordingly, and repeat the
above process until all three parameters are deter-
mined within desired tolerances. Note that asδ ∗

tends towards zero, the positional randomness de-
creases and leads to discrete integer solutions in that
region of parameter space.

1.3 Comparison with the original granocentric
model

Given that the granocentric model v1 is successful
in describing polydisperse emulsion packings, we
first demonstrate the ability of model v2 to describe
the same experimental packings and compare the
two methods. In Fig. 3 we show the confocal im-
age of a randomly packed polydisperse emulsion
and the corresponding reconstructed image of the
droplet radii and centers, as described in19,31. Im-
age analysis yields the number of neighborsn, con-
tactsz and the cell volumeV for each particle in the
packing. Both the original granocentric model and
the one presented here are equally good at describ-
ing polydisperse packings in terms of the previously
measured distributions ofn, z andV , as shown in
Fig. 3(a), (b), and (c). Nevertheless, disagreement
between the original model and physical reality is
apparent in the distribution of the total filled solid
angle,Ωtot, around the central particle. The model
v1 consistently overestimatesΩtot compared to ex-
perimental data, as shown in Fig. 3(d), because it
assumes that all neighbors are in contact with the
central particle when filling the available solid an-

gle Ωmax, which is a parameter in the model. Even
thoughΩmaxseems to be an approximate upper bound
for the total filled solid angle, it does not corre-
spond to a measurable quantity in a real packing;
it could be below 4π due to shielding of neighbors
or above 4π because of overlapping solid angles.
Instead, model v2 replacesΩmax with the parameter
Ω∗, which corresponds roughly to the experimen-
tally measured average total solid angle filled by the
particles, as shown in the figure.

In the model v1 some of the allocated neighbors
are moved a distancêδ away from the central parti-
cle to fit the global packing density. However, this
process does not influence the number of neighbors
since the neighbor selection step is independent of
the step to create the cell volume. In a real packing,
the further away the neighbors are the less solid an-
gle they occupy and therefore more neighbors can
be fit around a given particle. Therefore, model v2
includes an interdependence of all the parameters to
satisfy this physical constraint. This improvement
to the model leads to a much better agreement with
the experimental distribution of total filled solid an-
gle, as shown in Fig. 3(d). In conclusion, although
both models capture the distributions ofn, z and
V in polydiserse packings, the values of the model
parameters differ because they are inter-related in
model v2 such that they have a stronger physical
basis.

2 Application to monodisperse packings

The granocentric model v1 uses the size distribu-
tion as the only source of randomness at the first
stage of selecting neighboring particles, resulting in
a delta function for the distribution of neighbors in
the monodisperse case. Experimentally, this is not
the case due to positional disorder. Indeed, monodis-
perse packings have been investigated by numeri-
cal simulations and experiments on particles rang-
ing from ball bearings7,8 to colloidal spheres32. The
probability distribution of cell volumes is consis-
tent between various monodisperse random close
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Fig. 3 (top left) Confocal image and (top right) 3D reconstructionof polydisperse oil-in-water emulsion containing
≈ 1500 droplets in a box of volume 65×65×100µm3. In the reconstruction, spheres are colored according to their
radius, as indicated by the color bar, in units of average radius. Remaining figures compare experimentally obtained
distributions to those created with the granocentric models v1 and v2: (a) probability a cell hasn neighbors, (b)z
contacts, (c) local cell volumeV in units of〈r〉3, and (d) cumulative distribution function for filled solid angle. Only
a single value ofδ = δ ∗ (or δ = δ̂ for v1) is used. For the new model, at least one contact is required to
accommodate the allocation of remaining solid angle in the volume calculation.
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packings, as shown in Fig. 4. To gain access to all
the local parameters in experimental random close
packings (RCP), we study the jammed structure of
fluorescently dyed athermal poly(methyl methacry-
late) (PMMA) particles, shown in Fig. 5 (top left).
The particles are sedimented under gravity and lu-
bricated by a refractive index matched suspending
medium that eliminates friction and renders the pack-
ing transparent for optical observation. We thus im-
age a packing of over 6,000 particles, find each par-
ticle’s location and size and reconstruct the origi-
nal mage as shown in Fig. 5 (top right). To elim-
inate the small amount of polydispersity in the ex-
periment, we only consider those particles whose
radii are〈r〉 = 1.65µm±1%, which is the resolu-
tion of our particle finding algorithm. We are justi-
fied in taking such a subset of particles as we find
this sampling does not bias the measurable global
quantities such as the average coordination num-
ber, the average number of neighbors, or the global
packing fraction from the original data set with all
particles. The experimental packings are analysed
to obtain local cell statistics (cell volume and near-
est neighbors) by computing a Voronoi tessellation.
Contacts are determined as those with a surface-
to-surface distance below a set resolution tolerance
(0.04 times the particle radius). Since the distribu-
tion of Voronoi volumes is in good agreement with
previously published monodisperse RCP results, as
shown in Fig. 4, we next compare the experimental
distributions of local parameters to those generated
by the granocentric models.

Allowing each non-contacting neighbor in the
model v2 to be assigned a surface-to-surface dis-
tanceδ = δ ∗ replaces the delta function predicted
by model v1 by a broader distribution of neighbors
that is closer to that observed in the experiment, as
shown in Fig. 5(a). Moreover, this positional dis-
order also describes the distribution of filled solid
angle (data not shown), as in the polydisperse case.
On the other hand, the distributions of contacts are
in good agreement between the two models, and ac-
curately describe the data (Fig. 5(b)). This makes
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T. Aste et al33

A. Donev et al34

Fig. 4 Distributions of the Voronoi cell volumes,V ,
plotted as a function of(V −Vm)/(〈V 〉−Vm) for various
monodisperse data sets indicated in the figure legend.
Here,〈V 〉 is the average local cell volume obtained from
each data set andVm characterized the minimum local
cell volume, for the PMMA data it is the minimum
volume of the data set as the theoretical minimum is
unknown due to some polydispersity.

sense because the contact distribution is dominated
by the probabilityp of choosing contacts among
neighbors, present in both models.

Since both granocentric models do not predict
a smooth distribution of volumes seen in the exper-
imental data in Fig. 4, further sources of random-
ness need to be introduced. A fixed value ofδ = δ ∗

for the non-contacting neighbors leads to each pair
of n neighbors andc contacts having the same vol-
ume and hence a discrete volume distribution. The
ease of implementation of the models via Monte
Carlo simulations allows us to add positional ran-
domness by choosing delta from a probability distri-
bution rather than a single value. The model allows
for any choice of distribution, but we resort to a
beta distribution with density 2(1−δ/3δ ∗)/3δ ∗ for
0 ≤ δ ≤ 3δ ∗ and zero otherwise. This distribution
has meanδ ∗ and does approximate the experimen-
tal distribution of surface-to-surface distance, while
the optimized parameterδ ∗ aligns beautifully with
the experimental average, as shown in Fig. 5(c). Us-
ing the actual experimental distribution forδ is just
as successful at reproducing the local fluctuations,
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therefore we use the minimal input needed to agree
with experiments.

The additional randomness in the surface-to-surface
distance broadens the neighbor distribution for model
v2, making it a closer match to the experimental
data (Fig. 5(a)). For the model v1, this additional
positional randomness does not affect the neighbor
nor the contact distributions but it does smooth out
the volume distribution. However, this volume dis-
tribution is too broad compared to the experimen-
tal data. By contrast, model v2 predicts a smooth
volume distribution in excellent agreement with the
experimental data, as shown in Fig. 5(d).

In conclusion, model v2, with the chosen beta
distribution, captures the distributions of the num-
ber of neighbor and contacts, as well as the filled
solid angle and the local cell volume distribution in
monodisperse packings. Although this is an mini-
mal model, it accurately captures the fluctuations in
real systems.

3 Phase space of jammed random pack-
ings

The granocentric model v2’s success of describing
the monodisperse packing at the random close pack-
ing (RCP) limit in Sec. 2 leads us to use this model
to generate random configurations within a hypo-
thetical phase space of jammed states. The way in
which particles pack is influenced by many param-
eters, such as polydispersity, friction, rigidity, and
the protocol by which the packing is created. Glob-
ally, these parameters change the density at which
the particles pack and the average number of con-
tacts between them, thus defining a phase space of
jammed configurations accessible to real packings.
For example, monodisperse particles are known to
pack between random loose and random close pack-
ing densities depending on the friction coefficient18,35

or the packing protocol5,36. No matter how a pack-
ing is generated experimentally, our granocentric
model can be used to generate the fluctuations in-

side the packing using only global quantities as an
input.

Here, the granocentric model is used to describe
a wide range of monodisperse packings and to com-
pare the results with existing theoretical approaches
to jammed matter. In order for the model to work,
the user inputs〈n〉, 〈z〉 andφ for the packing of in-
terest. We first generate the distribution of local cell
volumes at the random loose packing (RLP) (〈n〉=
14, 〈z〉 = 4, φ ∼ 0.53) and at the RCP (〈n〉 = 14,
〈z〉 = 6, φ ∼ 0.64) limits for comparison, shown in
Fig. 6(a). The loose configurations have larger cell
volumes with a broader distribution than the RCP
configurations. This decrease in the standard devia-
tion between RLP and RCP has been observed in
experimental packings26,27,29,37and indicates that
the number of possible local configurations also de-
creases.

It is also interesting to relate the granocentric
model to Edwards’ statistical mechanics framework3

for granular matter. Working under the hypothesis
that packings occupying the same total volume have
the same macroscopic properties, Edwards proposed
to describe a randomly packed state using thermo-
dynamic quantities that are analogous to those used
in thermal systems: the system volume replaces the
energy, and the compactivity replaces the temper-
ature. Within this framework, a key quantity is the
equivalent of the Gibbs entropy of the packing, which
counts the number of microscopic configurations with
a given total volume. While the Gibbs entropy is
not accessible to the granocentric model since it re-
quires the knowledge of the joint probability distri-
bution of the volumes of all the cells in the packing,
its approximation by the Boltzmann entropy can be
readily calculated from

S =−
∫ ∞

0
p(V ) logp(V )dV (1)

wherep(V ) denotes the probability density of a sin-
gle cell in the packing. It is well-known that the
Boltzmann entropy in Eq. (1) is a good approxima-
tion of the Gibbs entropy if correlations between the
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Fig. 5 (top left) Confocal image and (top right) 3D reconstructionof monodisperse PMMA particles containing
≈ 6000 particles in a box of volume 70×70×35µm3. In the reconstruction, spheres are colored according to their
radius, as indicated by the color bar, in units of average radius. Remaining figures compare experimentally obtained
distributions to those created with the granocentric models v1 and v2: (a) probability a cell hasn neighbors, (b)z
contacts, (c) cumulative distribution function for the surface-to-surface distance,δ , in units of〈r〉, and (d)
probability distribution function for local cell volume,V , in units of〈r〉3. In granocentric models with “A” only one
value ofδ = δ ∗ (or δ = δ̂ for v1) is used, while in models with “B” the value ofδ is chosen from the prescribed beta
distribution. For all models, a minimum of 3 contacts are required to align with the experimental data.
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Fig. 6 Using the granocentric model v2 with the
prescribed beta distribution forδ we generate local cell
volume statistics. (a) The distributions of cell volumes
along with two different fittings of thek-gamma
distribution, Eq. 3, at both the random loose packing
(RLP) limit and the random close packing (RCP) limit.
The scale and shape parameters of thek-gamma
distribution are found using the maximum likelihood
measurement (MLE) as well as by matching the mean
and standard deviation of the distributions (match). The
inset depicts the values of the shape parameter,k, over a
range of packing densities between RLP and RCP. (b
and c) We create packings over a spectrum of packing
densities and average number of contacts while keeping
the average number of neighbors constant at 14. From
these model generated volumes we obtain (b) the
Boltzmann entropy of the packing using Eq. (1) and
compute (c) the compactivity,χ , using Eq. (2). Note
thatχ is given in units ofVp = 4π/3≈ 4.2.

cells are weak38 (in the standard equilibrium sta-
tistical framework this approximation becomes ex-
act in the limit of an ideal gas), which is consistent
with the local viewpoint taken in the granocentric
model. Using this model to estimatep(V ) we can
therefore map out the dependence ofS on the global
quantities〈z〉 andφ , as shown in Fig. 6(b). In these
calculations, we fixed〈n〉= 14 as measured for the
monodisperse RCP case because it does not change
significantly between different packing densities32.
The range of〈z〉 is chosen to be between 4 and 6 be-
cause these values correspond to the isostatic con-
dition in the limits of infinite and zero friction, re-
spectively. The range ofφ is chosen from below
RLP atφ = 0.45, since colloidal gels are known to
jam at arbitrarily low values39, to the RCP value of
φ ∼ 0.64 to avoid crystallization. The granocentric
model captures the general trend that is also seen in
the literature:S decreases with increasing packing
density17,29. Moreover,S increases with the aver-
age coordination number at a given density, consis-
tent with the fact that there are more ways to choose
6 rather than 4 contacts out of the set of 14 neigh-
bors.

Within Edwards’ statistical mechanics framework3,
the entropy can be related to the compactivity,χ , as

χ−1 = ∂S/∂v∗ (2)

wherev∗ = 〈V 〉 = Vp/φ is the average cell volume
andVp is the particle volume. Using formula (2)
with 〈n〉 = 14 fixed and〈z〉 andφ ranging between
4 and 6 and 0.45 to 0.64, respectively, gives the
result shown in Fig. 6(c) which indicates that the
granocentric model captures our physical intuition
about compactivity. States with lower density have
higher compactivity, and therefore a greater ability
to compactify further. Similarly states with fewer
contacts have higher compactivity than states with
the same density and more contacts.

Interestingly, measuring relative compactivity via
Eq. (2) circumvents assuming a specific distribution
for the volume but permits to test various distribu-
tions that have been proposed in the literature. For
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example, a popular model is thek-gamma distribu-
tion proposes in16 which assumes that the volume
fluctuations are described by

p(V ) =
k!

(k−1)!
(V −Vm)

k−1

(v∗−Vm)k exp

(

−k
V −Vm

v∗−Vm

)

,

(3)
whereVm characterizes the minimum volume (taken
to be the volume of an FCC unit cell) andk is the
shape parameter. While our granocentric model gen-
erated RCP packing is well described by this gamma
distribution, as are the experimental packings in this
state, the granocentric generated distributions are
less well fit as we approach the RLP limit (Fig. 6(a)).
This is corroborated by the fact that fitting the data
with a k-gamma distribution using either a maxi-
mum likelihood method or by extracting the param-
eters from the mean and the standard deviation of
the data gives different values for the parameterk
(as apparent from the inset in Fig. 6(a)).

4 Conclusions

We have introduced a granocentric model capable
of describing the fluctuations in the numbers of neigh-
bors and contacts as well as the cell volumes and
filled solid angle for experimental polydisperse and
monodisperse random packings. This new version
of the model is widely applicable as (1) it is capa-
ble of capturing the positional disorder as the dom-
inant source of randomness in monodisperse pack-
ings, (2) the three control parameters are based on
readily available experimental quantities and (3) it
is optimized for efficient implementation.

As a test of this model, we have mapped out
its predictions for a wide range of monodisperse
packings with different densities and average coor-
dination numbers corresponding to to our own ran-
dom close packed PMMA packings and those en-
countered in the literature. Interestingly, the vol-
ume fluctuations predicted by the model are in good
agreement with experimental data, indicating that
the model captures the dominant physical features

of granular materials. Furthermore, we make pre-
dictions of a plausible phase diagram of jammed
matter according to a statistical mechanics frame-
work, with which future experiments can be readily
compared.
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PNAS, 2011,108, 4286–4291.

33 T. Aste, T. Di Matteo, M. Saadatfar, T. J. Senden,
M. Schröter and H. L. Swinney,EPL, 2007,79, 24003.

34 A. Donev, S. Torquato, F. H. Stillinger and R. Connelly,J.
Comp. Phys., 2004,197, 139–166.

35 L. E. Silbert,Soft Matter, 2010,6, 2918–2924.
36 P. Ribière, P. Richard, P. Philippe, D. Bideau and R. De-

lannay,Eur. Phys. J. E, 2007,22, 249–253.
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