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Abstract
This investigation will look at multiple methods to

determine the wall shear stress for several pressure
gradient turbulent boundary layer flows, particularly
favorable pressure gradient and zero pressure gradient.
These methods include using the slope at the wall, the
integrated bounary layer equation, momentum inte-
gral equation and the Clauser method. In order to
perform this study, 2D Laser Doppler Anemometry,
(LDA), measurements of the velocity field near the
wall for various streamwise positions have been car-
ried out at the Chalmers L2 wind-tunnel. With the
resulting wall shear stress calculations, the effects of
pressure gradient and upstream conditions will be in-
vestigated on the inner region of the velocity profiles
and Reynolds stresses. As will be seen, the inte-
grated boundary layer equation is the most accurate
technique to determine the wall shear stress when di-
rect measurements are not available. In addition, the
velocity profiles show a mild effect of the pressure gra-
dient. The Reynolds stresses show a large effect of the
pressure gradient in inner variables, but not below,
y+ < 30. The shape of the Reynolds stresses < v2 >
and < uv > components changes significantly due to
the external pressure gradient, damping them as much
as 40%, though the streamwise < u2 > component ex-
hibits an insignificant amount of change.

Introduction
The effects of Reynolds number and pressure gradi-

ent on the skin friction coefficient, Cf , and the velocity
field have long been debated as well as the accuracy
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of various techniques used to determine this quan-
tity. Some of the more common methods to obtain
the skin friction include direct measurements such as
oil-film interferometry, force balance and the newer
MEMS devices. Common velocity based methods in-
clude computing the slope at the wall and evaluating
the momentum equation. Various in-direct measure-
ments such as the Clauser method and Preston total
head tubes are also used. Many of the theories and
methods have been proven valid for the ZPG boundary
layer, in various ranges of Reynolds number. However,
these theories become more complex in the presence of
an external pressure gradient.

Accurate values of Cf are of particular importance
due to its direct relationship to u∗, the friction veloc-
ity. Through similarity analysis, George and Castillo
(1997) found that the friction velocity is the correct ve-
locity scale for the inner region of the boundary layer.
Also, the inner similarity length scale involves u∗ and
the Reynolds stress inner similarity scale is u2

∗. Accu-
rate values of the friction velocity are needed to view
profiles in inner similarity variables. Also, obtaining
accurate values of Cf will enable better predictions of
the friction drag for airplanes, submarines, and ships.
With knowledge of the behavior of the skin friction
coefficient under a variety of flow conditions, different
ideas can be implemented for drag reduction studies.

To aid in determining accurate values of the skin
friction, this investigation will evaluate different tech-
niques in terms of their accuracy and limitations. Also,
the effects of an external pressure gradient on the
skin friction, as well as the scaled velocity profiles and
Reynolds stresses in inner variables will be examined.

Experimental Setup
This analytical study will look at four methods

to calculate the wall shear stress for different pres-
sure gradient turbulent boundary layer flows. Specif-
ically, the investigation will use the ZPG data of
Castillo/Johansson (CJ) (2002) as well as the devel-
oping FPG flow of Cal et al. (2005). Both of these
experiments were performed in the Chalmers Univer-
sity of Technology L2 wind-tunnel, where upstream
conditions such as wind-tunnel speed and trip wire size
and location could be controlled. The wind-tunnel has
a test section that is 3 m long, 1.8 m wide and 1.3 m
high and is a closed loop design.

In each case, the flat plate was installed vertically in
the wind-tunnel and various wind-tunnel speeds were
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Fig. 1 Schematic of favorable pressure gradient
boundary layer

used. Upstream wind-tunnel speeds of 4.6 and 8.4 m/s
were used for the FPG experiment, whereas 5, 10 and
20 m/s were used in the ZPG experiment of CJ. For the
FPG case the flat plate was tilted at various angles to
create variable pressure gradient strengths. The plate
angles of 3.5 (S-FPG 1 and 2) and 7 (S-FPG 3) degrees
resulted in weak developing FPG flows. These flows
begin as ZPG flows and slowly accelerate down the
plate. The strongest pressure gradient (S-FPG 4) is
created with a plate angle of 15 degrees. A schematic
of the set up appears in figure 1. Reynolds numbers
based on momentum thickness between 760 and 5300
are achieved for the different cases and appear with
other external conditions in table 1.

Two LDA probes with a measuring control volume
of 58µm in diameter were used and measurements as
close to the wall as y+ ≈ 2 for the ZPG experiment
and y+ ≈ 4 for the FPG experiment were achieved. A
complete description of the LDA system can be found
in Castillo and Johansson (2002) or in Cal et al. (2005)
which includes more information about the system.
For each set of external conditions, measurements were
taken at 12 downstream locations to obtain accurate
information about changes in the streamwise direction.
Table 1 contains the test matrix for all experiments
giving the upstream wind-tunnel speed, plate angle
and range of Reynolds numbers.

Flow Uo(m/s) Angle(deg) Reθ Range

S-CJ 1 4.9 0 760 → 1600

S-CJ 2 10.0 0 1500 → 3000

S-CJ 3 20.0 0 4200 → 5300

S-FPG 1 8.4 3.5 1300 → 2100

S-FPG 2 4.6 3.5 680 → 1200

S-FPG 3 8.4 7 1100 → 1800

S-FPG 4 10.0 15 1200 → 1700

Österlund 40 0 2500 → 6400

Smith-Smits 33 0 1170 → 2800

Table 1 Experimental Conditions

Inner Scaling
George and Castillo (1997) determined the scalings

for the inner boundary layer equations for a zero pres-
sure gradient boundary layer using similarity analysis.

This was extended to boundary layers subjected to
pressure gradients by Castillo and George (2001). Sim-
ilarity solutions for the mean velocity and Reynolds
stresses for the inner flow are assumed to be the prod-
uct of two functions,

U = Usi(x)fi(y+, δ+, λ+, ∗) (1)

− < uv >= Rsiuv (x)ri(y+, δ+, λ+, ∗) (2)

< u2 >= Rsiu2 (x)kui(y+, δ+, λ+, ∗) (3)

< v2 >= Rsiv2 (x)kvi(y+, δ+, λ+, ∗) (4)

where λ+ is the dependence on the pressure gradi-
ent. In the product solution, Usi and Rsiuv are the
inner velocity scale and the inner Reynolds shear stress
scale respectively and depend on x only. The scales
for the inner Reynolds normal stresses are given by
Rsiu2 and Rsiv2 and also depend on x. These are un-
known scales at this moment and will be determined
strictly by the similarity analysis of the equations of
motion. The similarity functions in inner scaling are
given by fi, ri, kui and kvi. The dependent vari-
ables of the similarity solutions are y+ = yu∗/ν, the
inner similarity length scale, the local Reynolds num-
ber dependence, δ+ = δu∗/ν, the pressure gradient,
λ+ = (ν/ρu3

∗)dP∞/dx and any possible dependence
on the upstream conditions, *, respectively.

In the inner region of the flow the boundary layer
equations reduce to,

0 =
−1
ρ

dP∞
dx

+
∂

∂y

[
− < uv > +ν

∂U

∂y

]
, (5)

where the pressure gradient term is maintained since
it can not necessarily be neglected before hand. The
Reynolds stresses have been neglected since they are
small in comparison to the other terms in equation 5.
Integrating equation 5 from y′ = 0 to y′ = y and
using the fact that U =< uv >= 0 at y = 0 and that
ν ∂U

∂y

∣∣∣
y=0

= u2
∗ results in:

τw

ρ
= u2

∗ = −y

ρ

dP∞
dx

− < uv > +ν
∂U

∂y
(6)

Substituting equations 1 to 4 into equation 6, the
resulting scalings can be determined. With the cor-
rect choice of scales, all the terms maintain the same
relative balance as the flow develops in the streamwise
direction. Consequently, it can be shown that in inner
variables, the velocity profiles should be scaled with
the friction velocity, Usi ∼ u∗ and all components of
the Reynolds stresses should also be scaled with the
friction velocity squared, Rsiu2 ∼ Rsiv2 ∼ Rsiuv ∼ u2

∗
as in the classical theory if the pressure gradient is
assumed to not influence the scalings.

Using these scalings, equation 6 is transformed into

1 = −y+ν

ρu3∗

dP∞
dx

− < uv >

u2∗
+

ν

u2∗

∂U

∂y
. (7)

2 of 11

American Institute of Aeronautics and Astronautics Paper 2006-2887



δ+

λ+

200 300 400 500 600 700
-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.0055

0.006

0.0065
S-FPG 1, (U∞=8.4m/s, Reθ=1400-2200, δ+=360-700)
S-FPG 2, (U∞=4.6m/s, Reθ=730-1260, δ+=218-380)
S-FPG 3, (U∞=8.4m/s, Reθ=1400-2250, δ+=370-690)
S-FPG 4, (U∞=10m/s, Reθ=1200-1700, δ+=400-580)
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Fig. 2 Inner momentum equation

Retaining the pressure gradient term, equation 7 can
be written in terms of the inner scalings as

1 = −y+λ+ − ri + f ′i , (8)

the inner similarity boundary layer equation, where
λ+ = ν

ρu3∗
dP∞
dx , ri = <uv>

u2∗
and f ′i = ∂U+

∂y+ = ν
u2∗

∂U
∂y . As

λ+ → ∞, the pressure gradient increases, and when
λ+ = 0, the flow is considered to be a zero pressure
gradient flow.

The pressure gradient for the four FPG experiments
are shown in inner variables (i.e., λ+ vs δ+) in Fig-
ure 2(a). In each case, λ+ increases in the downstream
direction indicating the nature of the developing FPG
flow. In addition, the balance of equation 7 is plotted
in figure 2 for one location (δ+ = 630) of the S-FPG
3 flow (7o plate angle). The line indicating the sum of
the terms is flat, except for fluctuations due to mea-
surement error, indicating that equation 7 holds up
to y+ ≈ 100. The sum of the terms is not exactly
1, which can be attributed to the difficulty of attain-
ing an accurate value of the friction velocity, u∗, used

to scale each term. Notice that the pressure gradient
term involving λ+ contributes 5% at y+ ≈ 20 and in-
creases rapidly. By y+ ≈ 100 the balance of equation 7
breaks down, since the mean convection terms which
are small and negligible in the inner region, begin to
play a role in the momentum balance. It is important
to note that for this particular profile, y/δ95 = 0.1 oc-
curs at y+ = 67, thus showing the slow turn on of the
mean convection terms.

Skin Friction
The other methods for determining the skin fric-

tion will be compared to the more accurate method of
direct measurement with oil film interferometry tech-
nique. Since oil film values for the specific cases in-
volved is not available, the curve fit of Österlund is
used. For a zero pressure gradient boundary layer, the
curve

Cf = 2
[

1
κ

ln(Reθ) + C

]−2

, (9)

where κ is 0.384 and C is 4.08 is used to determine
the skin friction. This correlation is considered to be
“exact”, so it is used to evaluate the accuracy of the
other methods for determining skin friction on smooth
zero pressure gradient flows.

Boundary Layer Equation

The integrated boundary layer equation given by
equation 10 is obtained by integrating the mean mo-
mentum equation and using the continuity equation
for the normal velocity, V . In addition, a correction
for the pressure gradient across the boundary layer
is incorporated using the wall normal Reynolds stress
component, < v2 >, by integrating the wall normal
momentum equation for the pressure. Often times the
gradient terms of the Reynolds stresses are ignored
since they are small, but they are kept here as they
account for approximately 3% and 2% percent of the
total, for the u and v components respectively. The
boundary layer equation is integrated from y′ = 0 to
y′ = y for the flow over a flat plate, subject to an
external pressure gradient.

τw

ρ
= u2

∗ = ν
∂U

∂y︸ ︷︷ ︸
(1)

−uv−
∫ y

0

∂U
2

∂x
dy′ + U

∫ y

0

∂U

∂x
dy′

︸ ︷︷ ︸
(3)

−
∫ y

0

∂u2

∂x
dy′ +

∫ y

0

∂v2

∂x
dy′ + U∞

dU∞
dx

y
︸ ︷︷ ︸

(6)

, (10)

Johansson/Castillo (2002) demonstrated that the
pressure gradient term (term 6) must be included even
for zero pressure gradient flows, as it is nearly impos-
sible to obtain a completely uniform velocity distri-
bution along the entire surface. Even a small pressure
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gradient is important in the outer region of the bound-
ary layer, since this term is multiplied by the wall
normal coordinate, y. Notice that any error in this
term is also amplified in the outer region.

Observe that in equation 10, the wall shear stress is
related to the friction velocity and in this form of the
equation knowledge of the x-dependence of the veloc-
ity field is required. Throughout the entire boundary
layer the shear stress on the left hand side is constant;
therefore at any y-location the sum of all the terms on
the right hand side should also be constant. Further-
more, to obtain a single value for the skin friction, the
individual total values at each y-location are averaged
from y/δ = 0.2 to y/δ = 0.8. This averages out the
noise while excluding the near wall region where the
fluctuations are largest. It also excludes the exterior
of the boundary layer where errors in the pressure gra-
dient term, U∞ dU∞

dx y, are amplified. This technique to
obtain the value of the skin friction is referred to as
the “integrated boundary layer” technique.

In the limit as y → ∞, equation 10 reduces to the
momentum integral equation,

τw

ρ
= u2

∗ = U2
∞

dθ

dx
+

(
2 +

δ∗
θ

)
U∞θ

dU∞
dx

, (11)

after substituting the definitions of δ∗ and θ. When
using the momentum integral equation, the deriva-
tives dθ/dx, and dU∞/dx must be determined exper-
imentally, which is not trivial. In order to reduce
the error in computing the derivative of θ, accurate
near wall measurements are required and a high res-
olution of data points in the outer flow are needed
(Johansson/Castillo 2002) because changes in momen-
tum thickness occur in the outer flow. In addition, to
accurately compute the derivatives many downstream
positions must be considered. The same is true for
the displacement thickness. The integrand is largest
between y = 0 and the first actual measured point.
Therefore accurate near wall measurements are re-
quired to accurately determine these parameters.

The derivatives in equation 11 must be determined
empirically and is further complicated by complex
pressure gradients. To compute the derivatives, multi-
ple curve fits including various order polynomials and
power laws are used. For each type of fit, the skin
friction coefficient is computed and the results are av-
eraged. In general, the fits deviate at the first and last
measurement locations, creating errors in the deriva-
tives at these points, and therefore errors in the skin
friction. In general, this method should be applied to
interior locations, with one or more other measurement
locations on either side. This technique to obtain skin
friction measurements is referred to as the “momen-
tum integral equation”.

Slope at the Wall

The slope at the wall technique is another velocity
based technique considered to be exact. Limitations
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Fig. 3 Theoretical near wall velocity profile

arise from determining the mean velocity such as probe
size resolution issues and locating the wall. Near the
wall, the velocity is given by

U = y
∂U

∂y

∣∣∣∣
y=0

− y2

2
∂2U

∂y2

∣∣∣∣
y=0

+
y4

24
∂4U

∂y4

∣∣∣∣
y=0

+ O(y5).

(12)
The second derivative term arises from the pressure
gradient and it can be demonstrated that the third
order term is zero, even for flows with pressure gradi-
ent. This equation is not limited to the linear sublayer.
Johansson/Castillo (2002) found it to be valid up to
y+ ≈ 10.

The evaluation of equation 12 requires the determi-
nation of ∂U

∂y , ∂2U
∂y2 and ∂4U

∂y4 evaluated at y = 0, the
location of the wall. This can be accomplished by fit-
ting a polynomial of the form,

Uf = a(y−y0)− 1
2ν

U∞
dU∞
dx

(y−y0)2+b(y−y0)4, (13)

to the measured mean velocity data near the wall. An
adjustment to the wall location, y0, is included in equa-
tion 13. This wall adjustment has been fixed at zero
for the data considered here, since its value is known
to be small in comparison to the first y location.

Least squares optimization was used to determine
the coefficients a and b in equation 13. With the known
coefficients, the wall shear stress can be computed by

τw

ρ
= aν. (14)

The computed velocity profile near the wall is plotted
in figure 3. The departure of equation 13 from the
experimental data occurs at approximately 0.5mm, or
y+ ≈ 13.

One of the drawbacks of using this technique is that
it relies on accurate measurements in the near wall
region (y+ < 2) which is challenging. This method
is also limited by the ability to identify the exact y-
location of the wall. LDA measurements have inherent
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error due to velocity biasing and positioning errors
near the wall, Johansson/Castillo (2002).

The Clauser Method

Using the Clauser (1954) method to determine the
skin friction has been the traditional approach used
for the past 70 years. This is accomplished by plotting
the profiles of U

u∗
vs. yu∗

ν in semi-log scale and then
optimizing the function

U

u∗
=

1
κ

ln
(yu∗

ν

)
+ B (15)

until it matches the data in the overlap region. For this
method κ and B are universal constants whose exact
values are argued over by many researchers. Tradition-
ally, values of κ = 0.41 and B = 5.25 have been used.
These values are used in the present study. However,
many experiments have shown the value to be closer
to 0.38 or 0.39, and Nagib et al. (2005) has shown
that the value of κ may depend on the strength of the
pressure gradient, while others have shown it depends
on Reynolds number.

The Clauser method is based on the fact that a
logarithmic region exists in the overlap region. Fern-
holz and Warnack (1998) showed that as the favorable
pressure gradient increases, the overlap region narrows
until it no longer exists. With few or no points to fit,
the Clauser method is difficult or impossible to im-
plement. Consequently, other methods are needed to
accurately determine the wall shear stress for these
flows.

Results
The Skin Friction Coefficient

The values of Cf obtained from the four meth-
ods discussed above, integrated boundary layer equa-
tion 10, momentum integral equation 11, slope at the
wall equation 14 and the Clauser technique are plot-
ted in figure 4(a) along with the Österlund correlation
(equation 9), for the zero pressure gradient data sets
S-CJ 1 and S-CJ 2.

Near wall measurements are needed for the slope at
the wall technique to perform well. At a wind-tunnel
speed of 5 m/s, measurements down to y+ ≈ 2 were
obtained for S-CJ 1. Therefore, the slope at the wall
technique nearly matches the Österlund correlation
with an error of 3−6%. However, for the experimental
data at 10 m/s, with measurements down to y+ ≈ 4,
the slope at the wall technique under predicts the skin
friction coefficient by about 10− 15% when compared
to the Österlund correlation.

The momentum integral equation 11, tends to over
predict the skin friction (figure 4(a)) for the zero pres-
sure gradient 10 m/s data, for the majority of the
profiles. The values obtained from the integrated
boundary layer equation 10 match the exact result
on average, however a few points have large error.
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a) Cf results for the data of CJ (2002) at 10m/s
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Fig. 4 Skin friction measurements

These two techniques use different forms of the same
equation, and yield different results, showing their sen-
sitivity to different parts of the flow and sources of
error. It is known that near wall measurements were
hard to obtain for S-CJ 2, therefore indicating that the
momentum integral equation is more sensitive to the
near wall region than the integrated boundary layer
equation. The integrated boundary layer equation is
expected to yield more accurate results on a larger
range of different flows.

The addition of the external pressure gradient (Cal
2005) complicated the methods to determine skin fric-
tion and the evaluation of the accuracy of these meth-
ods. Given the inability to resolve the current oil
film interferometry measurements, the methods used
to compute the skin friction do not have a direct basis
for which to compare. Since S-FPG 1 is known to be
a mild favorable pressure gradient, the first few down-
stream locations can be approximated by having no
pressure gradient. The skin friction values obtained
from the four methods are plotted in figure 4(b) along
with the Österlund correlation as a bench mark.
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It is known that as the mild pressure gradient in-
creases, the skin friction should also increase. The
values obtained by the Clauser method do not exhibit
this trend, remaining significantly below the Österlund
correlation. These values differ from the integrated
boundary layer equation values by as much as 25%.
The slope at the wall technique exhibits the proper
trend, yet there is some scatter, more than the inte-
grated boundary layer equation values. Measurements
were obtained down to y+ ≈ 4. Since the values of
skin friction are scattered here and not when measure-
ments were obtained down to y+ ≈ 2, the slope at
the wall method will be ineffective if measurements
are not taken down to at least y+ ≈ 4. The momen-
tum integral equation 11 yielded an overall increasing
trend to the skin friction values, which is not expected
in the first few downstream locations, since the flow
is basically a zero pressure gradient. The integrated
boundary layer equation 10 is the most accurate. The
values obtained from this method follow the zero pres-
sure gradient correlation for the first few downstream
locations, then depart and increase as the pressure gra-
dient increases. There is also very little scatter in this
method as compared to the slope at the wall method.

The integrated boundary layer equation technique
works the best for the FPG flow considered compared
to the other techniques. To closely examine this tech-
nique the terms of the integrated boundary layer equa-
tion 10 are plotted in figure 5 for both a ZPG flow and
a FPG flow at approximately the same downstream lo-
cation. The solid line, representing the sum of all the
terms is fairly constant, indicating that the method
has worked successfully for these two flows since τw/ρ
is expected to be constant throughout the layer. The
convection terms (term 3 from equation 10) change
significantly between the ZPG and FPG flows. In the
ZPG flow term 3 is positive and balances with the
Reynolds shear stresses. However for the FPG flow
term 3 is negative which balances the stronger pres-
sure gradient term (term 6).

In figure 6, the effect of the pressure gradient on the
skin friction coefficient can be seen for the different
cases of Cal et al (2005). When comparing S-FPG
1 (3.5o plate angle) to S-FPG 4 (15o plate angle),
the values of skin friction increase, while the Reynolds
number decreases. This same trend is also seen when
comparing S-CJ 2 (ZPG flow) to the other pressure
gradient flows. However, there is little difference be-
tween the skin friction values of S-FPG 1 and S-FPG
3. As S-FPG 1, 2 and 3 develop downstream, the pres-
sure gradient increases, as does the skin friction. For
the strongest pressure gradient, S-FPG 4, (15o plate
angle), the skin friction coefficient is higher over the
entire test section compared to the ZPG curve. In
addition, the extreme angle actually imparts a strong
enough pressure gradient to reduce the height of the
momentum thickness. In each of the pressure gradi-
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Fig. 5 Terms from the integrated momentum

equation. × : ν ∂U
∂y

, ◦ : uv, + :mean convection,
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ent cases, the Reynolds number approaches a constant
value due to the tendency of the momentum thickness
to decrease while the freestream velocity increases.

The integrated boundary layer technique is good
to use when there is less knowledge about the in-
ner flow. However, problems arise with this method
when there is not enough downstream locations placed
close enough together such that accurate derivatives
in the x-direction can be evaluated. In order to use
this method, experiments would need to be designed
with this in mind. Those experiments where wind-
tunnel speeds change significantly downstream (such
as strong pressure gradients), the measurement lo-
cations would need to be placed closer together to
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capture the x-dependence. In addition, turning the
wind-tunnel on and off during a downstream set of
measurements will severely limit the accuracy of this
method.

Inner Variables

In order to study the effects of the external pres-
sure gradient and the upstream conditions on the inner
flow, the mean velocity and Reynolds stresses are pre-
sented in inner variables. The friction velocity is the
proper velocity scale in the inner region, (George and
Castillo 1997) thus accurate values of u∗ are needed
for each profile. Based on the previous discussion,
values of the friction velocity are obtained from the
integrated momentum equation 10. They are used to
scale all the FPG profiles in inner variables while the
results from the Österlund correlation will be used for
the ZPG profiles. It should be noted that for the flow
of Cal (S-FPG 1-4) only 6 profiles are used where it
is believed the skin friction has been computed most
accurately. These locations are towards the back of
the test section where the pressure gradient is largest.

The ZPG velocity profiles in inner variables are
shown in figure 7(a) along with the ZPG data of
Österlund and the hot-wire measurements of Smith
and Smits (1995). As can be seen despite the large
range in Reynolds numbers and wind-tunnel speeds
the profiles tend to collapse in the inner region and
overlap region as would be expected. Also, notice that
as the Reynolds number increases, the overlap region
gets longer.

The velocity profiles for the FPG cases of Cal et al.
are shown in figure 7(b). The effect of the pressure
gradient is not seen below y+ ≈ 40, as all four cases
(S-FPG 1-4) collapse. However, in the overlap region,
as the pressure gradient increases, there is a very min-
imal downward shift of the profiles. This shift is seen
when comparing S-FPG 3 to S-FPG 4 in figure 7. Mea-
surements closer than y+ ≈ 15 could not be obtained
therefore the very near wall behavior could not be in-

vestigated for the strong FPG case.
In an effort to isolate the effect of the pressure gra-

dient, profiles at a fixed Reynolds number of δ+ ≈ 380
are selected from each case and plotted in figure 7(c)
and figure 10. For the cases at 5 m/s, these profiles oc-
cur farther downstream than the 10 m/s cases. For the
FPG flows, the selected profile for S-FPG 2 (5 m/s)
has a stronger pressure gradient strength then the pro-
files selected for S-FPG 1 and S-FPG 3. At 10m/s, the
profiles are closer to the leading edge where there is al-
most a negligible pressure gradient. Therefore there is
a different strength of pressure gradient between the
ZPG data, S-FPG 2 and S-FPG 4. Even with this dif-
ference in pressure gradient strength, all the profiles
collapse through the overlap region until y+ ≈ 100.

The streamwise Reynolds stress component for the
ZPG flows is scaled with the friction velocity, and plot-
ted in figure 8(a). The different wind-tunnel speeds
(Uo = 5, 10 and 20m/s) collapse up to y+ ≈ 10 where
the peak in the Reynolds stress occurs. From this point
on, each case collapses to its own curve, thereby re-
moving the Reynolds number dependence. However,
each wind-tunnel speed has its own curve indicating
the dependence on the external conditions is apparent
in the outer portion of the flow, but not the inner. The
wall-normal Reynolds stress component (figure 8(b))
exhibits a similar trend. The collapse is extended far-
ther from the wall, up to y+ ≈ 100, at which point the
three cases depart, collapsing onto their own curves.
The Reynolds shear stress (figure 8(c)) also collapses
up to y+ ≈ 100, but the collapse is not as tight as
the other two Reynolds stresses. Again, the effects of
the external conditions, but not Reynolds number can
be seen in the outer portion of the flow. Equation 7 is
used to compute the value of the Reynolds shear stress
from the gradient of the velocity. This theoretical pro-
file matches the experimental data up to y+ ≈ 100,
which is where the effects of the external conditions
begin to appear. This is already well into the outer
flow as y/δ95 = 0.1 at y+ = 80 and the equation is
only expected to be valid in the inner flow.

For the FPG flows of Cal et al. the effect of Reynolds
number and pressure gradient is explored in figure 9.
Figure 9(a) shows the streamwise component < u2 >
and the profiles for S-FPG 1, S-FPG 2 and S-FPG
3 tend to collapse throughout most of the boundary
layer since the Reynolds number is very similar. How-
ever, most of the variations that are seen are due to
the external pressure gradient. Another observation
is that for the stronger pressure gradient, the profiles
throughout the entire boundary layer change shape.
This is seen for the profiles of case S-FPG 4 which has
a plate angle of 15o in addition to case S-FPG 3 with
a 7o plate angle.

The wall normal component, < v2 >, plotted in
figure 9(b), shows a much stronger influence of the
pressure gradient. Although for y+ < 20, the pressure
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gradient does not seem to penetrate the inner bound-
ary layer, the fluctuations are suppressed more as the
strength of the pressure gradient increases. This is a
direct result of the imposed pressure gradient and ex-
tends into the outer flow for y+ > 20. For the the mild
pressure gradient cases (S-FPG 1-3), this component
is damped by approximately 20%. For the very strong
pressure gradient case, the collapse of the inner region
is hard to detect, since near-wall measurements were
unable to be obtained. However, the wall-normal fluc-
tuations are dampened as much as 30%, significantly
more than the milder FPG cases. In addition, the
overall shape of the profiles change indicating a possi-
ble approach towards quasi-laminarization (Cal 2006).

The Reynolds shear stress, < −uv >, is shown in
figure 9(c) for the FPG data of Cal. This compo-
nent behaves similarly to the < v2 > component.
The profiles tend to collapse in the inner region for
y+ < 20, but show a strong effect of the pressure
gradient further from the wall. In addition, as the
pressure gradient increases the magnitude of this com-
ponent decreases. The reduction of Reynolds shear
stress is approximately 20% and 30% for the weak and
strong pressure gradients, respectively. The theoret-
ical profile for S-FPG 3 at δ+ = 634 is included in
figure 9(c), and nearly matches that experimental data
up to y+ ≈ 70. This is also the upper limit for the in-
ner flow (y/δ95 = 0.1) and thus the inner equation is
no longer valid.

Reynolds stress profiles with the same Reynolds
number of δ+ = 370, but different pressure gradient
strengths are plotted in figure 10. The streamwise
component < u2 > (figure 10(a)) shows a small de-
pendence on wind-tunnel speed and pressure gradient
strength. Both the wall normal Reynolds stress and
the Reynolds shear stress show a much larger depen-
dence on the pressure gradient. For the FPG mea-
surements at 5m/s and for the very strong pressure
gradient cases, there is a reduction of approximately
15% in the magnitude of the Reynolds stress through-
out the entire boundary layer, where the values of
λ+ are 0.0028 and 0.0044, respectively. The strong
pressure gradient (S-FPG 5, 15o) reduces the < v2 >
component significantly and thus decreases the < uv >
component. For the < v2 > component, this reduc-
tion is 26% and 44% for the < uv > component. For
S-FPG 3 (7o plate angle), the reductions are 22% and
24% for the < v2 > and < uv > respectively. It is
also clear that variations in the profile due to pressure
gradient exist for y+ < 15, indicating its importance
on the near wall Reynolds stress profiles.

Conclusion
Several techniques to compute the wall shear stress

for various ZPG and FPG flows as well as the effects
of upstream conditions and pressure gradient in the
inner flow were investigated. In the absence of direct

measurements using oil film interferometry, the inte-
grated boundary layer equation is the most accurate
method to use for pressure gradient flows. The mo-
mentum integral equation as well as the slope at the
wall technique are difficult to implement experimen-
tally unless accurate measurements are provided below
y+ ≈ 5. For both the momentum integral equation
and integrated boundary layer equation, the stream-
wise (x-direction) dependence of the velocity field is
required. Although useful for ZPG flows, the Clauser
method tends to break down in the presence of an ex-
ternal pressure gradient.

When the velocity profiles are plotted in inner sim-
ilarity variables, the pressure gradient does not seem
to affect the inner layer below y+ ≈ 40. However,
the pressure gradient term contributed 5% of the mo-
mentum balance at y+ = 20. The effect of external
conditions such as upstream wind-tunnel speed and
external pressure gradient appear in the outer, but not
the inner region of the flow.

All three Reynolds stresses scaled with the friction
velocity squared, collapsed in the inner region, but also
showed the effects of wind-tunnel speed and external
pressure gradient in the outer region of the flow. For
the zero pressure gradient flows, the effects of Reynolds
number were completely removed throughout the en-
tire profile, thereby isolating the effect of upstream
wind-tunnel speed. The external pressure gradient
affected the flow above y+ ≈ 20, reducing both the
< v2 > and the < uv > components, as much as 30%
for the strongest FPG flow.
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Fig. 10 Reynolds stresses in inner variables at
fixed δ+ = 370
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