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Perfect spike-to-spike synchrony is studied in all-to-all coupled networks of identical excitatory,
current-based, integrate-and-fire neurons with delta-impulse coupling currents and Poisson spike-
train external drive. This synchrony is induced by repeated cascading “total firing events,” during
which all neurons fire at once. In this regime, the network exhibits nearly periodic dynamics,
switching between an effectively uncoupled state and a cascade-coupled total firing state. The prob-
ability of cascading total firing events occurring in the network is computed through a combinatorial
analysis conditioned upon the random time when the first neuron fires and using the probability
distribution of the subthreshold membrane potentials for the remaining neurons in the network.
The probability distribution of the former is found from a first-passage-time problem described by
a Fokker-Planck equation, which is solved analytically via an eigenfunction expansion. The latter is
found using a central limit argument via a calculation of the cumulants of a single neuronal voltage.
The influence of additional physiological effects that hinder or eliminate cascade-induced synchrony
are also investigated. Conditions for the validity of the approximations made in the analytical
derivations are discussed and verified via direct numerical simulations.
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I. INTRODUCTION

Synchronous neuronal network oscillations are a ubiq-
uitous phenomenon, occuring in diverse areas of the
brain, with great complexity of manifestations, a mul-
titude of frequency ranges, a host of presumed underly-
ing physiological mechanisms reflecting an intricate in-
terplay among short- and long-range, excitatory, and in-
hibitory interneuronal connections, and often involving
large numbers of neurons [1–6]. While the role of syn-
chronous oscillations in various brain functions is not yet
well understood, they are believed to serve as clocks and
means of information encoding [6, 7].

One broad type of neuronal network oscillations is
a collective phenomenon in which only the membrane
potentials and spiking averaged over an entire network
of neurons exhibit oscillations, whereas the individual
neuronal potential and spiking may not appear oscilla-
tory [8–13]. Such oscillations can be detected for exam-
ple, by measuring the local field potential, i.e., the aver-
age neuronal membrane potential in a patch of cortical
tissue, which reflects the overall neuronal activity in this
patch [14–18].

A different type of neuronal network oscillations in-
volves primarily excitatory neurons, firing in bursts,
such as in developing networks [19–23]. These bursts
emerge from a quiescent state and are believed to be
suppressed by refractoriness caused by either synaptic
depression [22] or an adaptation current [21, 23].
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Due to the large numbers of neurons involved, net-
work models used in computational studies of various
types of synchronous oscillations frequently consist of
simplified point neurons of integrate-and-fire type. The
model networks have been either all-to-all coupled [24]
or sparse [25–27], composed of excitatory [22, 23, 28], in-
hibitory [29–35] or both types of neurons [36–41], homo-
geneous [42] or heterogeneous [43, 44], and driven deter-
ministically [24] or randomly [13], and thus have yielded a
great variety of network mechanisms responsible for syn-
chronous behavior and ways to compute the respective
oscillation frequencies.

Considering very basic point-neuron and neuronal-
network models is important because they often produce
the clearest and most sharply delineated network mecha-
nisms responsible for a given type of network dynamics.
Among the most basic is the current-based, all-to-all cou-
pled, excitatory, integrate-and-fire (IF) model [45–47].
Under constant drive sufficiently strong to push the neu-
ronal voltages over the firing threshold, i.e., superthresh-
old drive, this network is known to synchronize for almost
all initial conditions and exhibit time-periodic total fir-

ing events, during which all the neurons fire at once [24].
This synchrony is induced by the attraction in the phase
dynamics of the neurons in the network. Small random-
ness in the coupling [48] and other model parameters [49]
does not destroy this synchrony.

In this paper, we consider a fully stochastic version of
this classic model, in which we replace the (nearly) con-
stant external drive by a noisy drive, with each neuron
driven by an independent Poisson spike train. We reveal
a different mechanism for the perfect spike-to-spike syn-
chrony, namely, cascading total firing events which drive
the network to synchrony after a period of effectively zero
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coupling. Under certain parameter regimes, the network
exhibits nearly periodic dynamics, switching between ef-
fectively totally uncoupled states and cascading states
when all neurons fire together. This cascade mecha-
nism of synchrony can operate both in the superthreshold
regime when the average of the external drive is suffi-
ciently strong to push the neuronal voltages over the fir-
ing threshold, and, more importantly, in the subthreshold
regime when it is not, and the neuronal firing is driven
by fluctuations in the external drive. In both regimes,
cascading total firing events are separated by random
time intervals, but with a well-defined mean frequency.
We should emphasize that these total firing events differ
from their deterministic counterparts in that the indi-
vidual neuronal-voltage trajectories are now not identical
but instead differ from neuron to neuron. Therefore, to-
tal firing events occur not because of complete synchrony
of the voltage trajectories, as in the deterministic case,
but rather as cascading events during which the firing of
one neuron pushes the next neuron’s voltage over thresh-
old, and so on, when the neuronal voltages are not spread
too far apart.

After presenting numerical evidence of persistent syn-
chronous cascading total firing events in the network, we
derive the average time-period between pairs of neigh-
boring total firing events using a first-passage-time ap-
proach [50–55] and solving the associated Fokker-Planck
equation via an eigenfunction expansion. What makes
this approach possible is the above-mentioned fact that,
between cascading total firing events, no neurons fire,
and thus the network is effectively decoupled. The ap-
proach works for both subthreshold and superthreshold
external drive. In addition, we develop a Gaussian ap-
proximation to describe the spreading of the neuronal
voltages between total firing events, and use it for an al-
ternative derivation of the average oscillation frequency
in the regime of superthreshold driving. In this frame-
work, we moreover develop a combinatorial argument to
calculate the probability of observing repeated cascading
total firing events.

Finally, we discuss how additional physiological ef-
fects affect the synchrony of firing events. These include
synaptic failure, sparsity of synaptic connections, ran-
dom transmission delays, and finite rise and decay times
for the neuronal conductances. We see that the first two
effects act in a similar fashion. They preserve cascading
total firing events, but reduce the probability of observing
these events in succession, proportionally to the average
reduction of network connectivity. The last two effects
destroy cascading total firing events and turn them into
approximate synchrony, provided the transmission delays
or conductance time-scales are not too long. In partic-
ular, we give numerical evidence that all neurons still
fire within short, approximately-periodic time-intervals,
interspersed with longer quiescent periods.

The remainder of the paper is organized as follows.
We discuss the current-based integrate-and-fire model in
Sec. II along with a brief description of the event-driven

algorithm used for numerical simulation. In Sec. III we
begin our discussion of the synchronous dynamics present
in this model. We proceed with analysis of the com-
pletely synchronous state in Sec. IV by deriving the mean
time between total firing events, and an approximation to
this time, based on the Gaussian approximation of a sin-
gle neuronal voltage distribution derived in Sec. IVB 1.
These results are compared to the results from numeri-
cal simulation in Sec. IVC. To complete the discussion
of the synchronous dynamics, in Sec. V we compute the
probability of finding repeated total firing events, and ob-
tain excellent agreement with the corresponding numer-
ical simulation results. Using this measure of synchrony,
we investigate how effective additional physiological ef-
fects are at reducing synchronous behavior in Sec. VC.
Conclusions are presented in Sec. VI. Further details of
the analysis are presented in the appendices.

II. THE MODEL

We consider a model neuronal network of N all-to-
all coupled, current-based, excitatory, integrate-and-fire
(IF), point neurons [45, 46], governed by the system of
equations

dvj
dt

= −gL(vj − VR) + Ij(t), j = 1, . . . , N, (1a)

where vj is the membrane potential of the jth neuron, gL
is the leakage conductance, and VR is the leakage/reset
voltage. The voltage, vj , evolves according to Eq. (1a)
while it remains below the firing threshold, VT . The
synaptic current, Ij(t), is modeled by the pulse train

Ij(t) = f
∑

l

δ(t− sjl) +
S

N

∑

i6=j

∑

k

δ(t− τik), (1b)

where δ(·) is the Dirac delta function. The first term in
Eq. (1b) corresponds to the currents arriving from the ex-
ternal input. Each neuron’s external input is modeled by
an independent Poisson train of current spikes with rate
ν. At the lth spike time, t = sjl, the jth neuron’s volt-
age jumps by an amount f . The second term in Eq. (1b)
corresponds to the currents arriving from within the net-
work. At time τjk, when vj reaches the threshold VT ,
the jth neuron fires a spike. The voltage vj is set to the
reset voltage, which is assumed to be VR here, and im-
mediately becomes governed by Eq. (1a) again. At the
same time, impulse currents are injected into all other
neurons, increasing each neuron’s voltage by an amount
S/N . The scaling by N , the number of neurons in the
network, ensures the average network input to any neu-
ron remains bounded as N → ∞.
We point out that in this model, a neuron’s voltage

is only increased at a time when it receives a spike from
either the network or the external drive, and decays oth-
erwise. Therefore, a neuron can only fire a spike at a
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time some neuron in the network receives a spike from
the external drive.
In our model we incorporate an idealized refractory pe-

riod by holding a neuron’s voltage at the reset value after
it has fired even if other neurons fire at the same time.
This is in line with the discussion in [24], but prevents
any neuron from firing more than once at any given time
and thus the occurrence of bursts such as those described
in [21–23].
In view of the properties described above, our numeri-

cal simulation method is event-driven, similar to the one
discussed in Sec. 2.4.1 of [56]. This event-driven al-
gorithm allows us to simulate our IF dynamics up to
machine accuracy. We use the nondimensional values
gL = 1, VR = 0 and VT = 1 in numerical simulations.
The effect on the network (1a) from an external Pois-

son spike train with rate ν and spike strength f is the
same as from a constant current of strength fν in the
limit as f → 0 and ν → ∞ while fν ∼ O(1). We will
refer to this limit as the zero-fluctuation limit. Most re-
sults presented below are for the situation near this limit
when f is small, and ν large, with fν ∼ O(1), which we
refer to as the small-fluctuation regime. As mentioned
in the introduction, the zero-fluctuation limit for a sin-
gle neuron also defines the subthreshold regime, in which
fν < gL(VT − VR), and the superthreshold regime, in
which fν > gL(VT − VR).

III. SYNCHRONY

In the deterministic version of the pulse-coupled, all-
to-all model (1), with constant external drive of strength
fν, the evolution of the neuronal voltages is known
to be rapidly attracted to a synchronous, time-periodic
state [24]. In this state, all neuronal voltages evolve iden-
tically and produce periodic total firing events, during
which all neurons fire at once, as already mentioned in
Sec. I. The period τ̂ between two subsequent total fir-
ing events can be obtained exactly in terms of a single
neuron’s voltage, which is governed during this time by
the equation dv/dt = −gL(v−VR) + fν and satisfies the
initial condition v = VR immediately after the first of the
two firing events. In the superthreshold regime, it is easy
to show that the period τ̂ satisfies

τ̂ =
1

gL
ln

(

fν

fν − gL(VT − VR)

)

. (2)

In the subthreshold regime, fν < gL(VT − VR), so the
voltage never reaches VT and no neuron in the network
ever fires.
Under Poisson-train driving, for sufficiently large val-

ues of the Poisson rate ν and network coupling strength
S, simulations of the network (1) reveal synchronous fir-
ing in a variety of forms. The raster plots shown in
Fig. 1, where dots indicate which neuron fired at what
time, show examples of synchronous dynamics of the net-
work: partial synchrony (Fig. 1a), during which firing

events occur that include a majority, but not all, of the
network neurons; imperfect synchrony (Fig. 1b), during
which firing events including all of the neurons are punc-
tuated by occasional firings of individual neurons; and
perfect synchrony (Fig. 1c), characterized by cascading
total firing events during which all neurons fire in unison.
Over a broad range of parameters in our simulations,
not only does the network coupling sustain synchrony
in the network dynamics, but it drives a network into a
synchronous state. We note that the network coupling
strength, while sufficiently large for achieving synchrony,
is typically still weak in that it requires many incoming
spikes from other neurons to cause a neuron to fire, that
is, S/N ≪ VT − VR.

We emphasize the tendency of the network (1) to syn-
chronize over a broad range of parameters by plotting
the average number of neurons firing instantaneously in
a cascading event in Fig. 2. Complete asynchrony cor-
responds to an average of one neuron firing per cascade
(black), while perfect synchrony corresponds to an aver-
age of all neurons firing in repeated total firing events
(white). In both the subthreshold (Fig. 2 top) and su-
perthreshold (Fig. 2 bottom) driving regimes, the asyn-
chronous dynamics are stable only in a very narrow re-
gion. Although cascades including half or a quarter of the
network on average could still be considered synchronous
dynamics, we will restrict ourselves to classifying syn-
chrony in terms of cascading total firing events (white
areas of Fig. 2) in the remainder of this paper.

As already mentioned in the introduction, the mech-
anism underlying the cascading total firing events in a
Poisson-train-driven network differs from its determinis-
tic counterpart in that individual neuronal trajectories
are not identical and in fact spread apart between such
events. Consequently, as we will see below, the aver-
age time between total firing events in the stochastically
driven network is smaller than the period τ̂ given by
Eq. (2), but approaches τ̂ as the fluctuations in the ex-
ternal driving current vanish.

During cascading total firing events, all neurons in the
network fire simultaneously, and all neuronal voltages, vj ,
are reset to VR at the same time. The voltages then rise
probabilistically, due to the stochastic external driving,
until the first neuron fires and pushes all other neuron
voltages upward and possibly above threshold. When
the first neuron fires, the voltages of the remaining neu-
rons are classified as cascade-susceptible if a total firing
event ensues. We classify the network as synchroniz-

able if the probability, P (C), of neuronal voltages to be
cascade-susceptible is sufficiently large. In the numerical
examples presented below, we take the cut-off value to
be P (C) = 0.85. By this definition the networks (a) and
(b) in Fig. 1 are not synchronizable, as other firing events
frequently appear which are not part of the total firing
events; they might be considered synchronous by some
other less stringent characterization.
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IV. SYNCHRONOUS FIRING RATE

In this section, we analyze the firing dynamics of the
perfectly synchronous network. First, we study its mean
firing rate in Sec. IVA using the probability density func-
tion (pdf) for the time between total firing events by re-
lating it to the pdf of the time between firing events of a
single uncoupled neuron. This analysis is carried out via
a first-exit-time approach and is valid in both the sub-
threshold and superthreshold regimes. In Sec. IVB, we
then use a central-limit argument to derive an approxi-
mate Gaussian pdf for the voltage of a neuron that has
not yet fired. In addition to being important in its own
right, the knowledge of this pdf also allows for a particu-
larly simple alternative method to obtain the mean time
between total firing events in the superthreshold driving
regime. The pdfs derived in this section will also be used
later in Sec. V in computing the probability of finding
repeated total firing events. The analysis in this section
is based on the assumption that total firing events are
seen in succession without extraneous neurons firing in
between, so that the spiking rate of a neuron in the net-
work is the inverse of the expected time between total
firing events.

A. Distribution of the Times Between Cascading
Total Firing Events

Here, we derive the firing rate of the network in terms
of the firing rate of a single uncoupled neuron driven by
a Poisson spike train with rate ν and spike strength f . In
particular, since between cascading total firing events the
neurons are effectively uncoupled, we can consider the N
independent times that each of these neurons would take
to spike if influenced by only its own external drive. We
focus on the shortest of these times: the inverse of its av-
erage is used to obtain the network firing rate. In turn,
the pdf for the spike time of a single uncoupled neuron is
determined by solving the first-exit-time problem for the
voltage crossing the firing threshold, VT . As we will see
below, in the small-fluctuation limit, this problem is de-
scribed by a Fokker-Planck equation (FPE) with appro-
priate boundary conditions, which is solved analytically
using an eigenfunction expansion.

We compute the pdf, p
(1)
T (t), of the minimum exit time,

T (1), of the N neurons in terms of the pdf, pT (t), of a
single neuron’s exit time (the time at which the neuronal
voltage exits the domain VR ≤ v < VT through VT ) via
the equation

p
(1)
T (t) = NpT (t)

(

1− FT (t)
)N−1

, (3)

where FT (t) =
∫ t

0
pT (t

′)dt′ is the cumulative distribution
function (cdf) of the exit time for a single neuron [57].
The expected time between total firing events is then

deduced from Eq. (3) as

〈

T (1)
〉

=

∫ ∞

0

tp
(1)
T (t)dt. (4)

To approximate the single-neuron exit time distribu-
tion, pT (t), we remove the neuron from the system when
its voltage reaches threshold, meaning that the neuron’s
voltage is “absorbed” at VT rather than being reset back
to VR. Then, the probability that at time t this neuron
has not yet fired (it will fire at a later time T ) is the
probability that it is still in the domain, VR ≤ x < VT .
This probability is

P (T ≥ t) = 1− FT (t) =

∫ VT

VR

pv(x, t)dx, (5)

where x parameterizes the neuronal voltage whose
pdf, pv(x, t), satisfies the Kolmogorov forward equation
(KFE) for a single Poisson-spike-train-driven, IF neuron
with an absorbing barrier at VT [52, 53, 58–60]. The
KFE may be thought of as expressing the conservation
of probability density, and reads

∂

∂t
pv(x, t) =

∂

∂x

[

gL(x− VR)pv(x, t)
]

+ν
[

pv(x− f, t)− pv(x, t)
]

, (6)

where incoming spikes are modeled by a Poisson spike
train with rate ν and strength f .
A heuristic derivation of Eq. (6) proceeds as follows.

The first term on the right-hand side of (6) represents
the difference in the probability flux, gL(x− VR)pv(x, t),
through the voltage values x and x+dx due to the smooth
streaming of phase points under the relaxation dynamics
in Eq. (1a). The second term on the right-hand side
of (6) reflects the fact that, with every incoming external
spike, the neuron’s voltage jumps by the amount f , and
that these spikes arrive at the rate ν. A more detailed
derivation of Eq. (6) can be found in [58]. Note that
the pdf, pv(x, t), is defective in the sense that its integral
over the domain VR ≤ x < VT does not equal unity for all
times: the difference is exactly the probability that the
neuron has reached threshold, VT , and therefore been
removed from further consideration.
A diffusion approximation to the KFE (6) can be ob-

tained by considering f small, at least f ≪ VT − VR, so
that a large number of incoming spikes is needed to bring
the neuronal voltage from reset to threshold. We Taylor
expand the function pv(x−f, t) for small f , and keep the
first three terms in this expansion, reducing Eq. (6) to
the Fokker-Planck form

∂

∂t
pv(x, t) =

∂

∂x

[

(

gL(x− VR)− fν
)

pv(x, t)

+
f2ν

2

∂

∂x
pv(x, t)

]

. (7)

Here, the difference terms have been replaced by drift and
diffusion terms. Note that the FPE (7) can be written in
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the conservation form

∂

∂t
pv(x, t) +

∂

∂x
J [pv](x, t) = 0

with the probability flux J [pv](x, t) given by

J [pv](x, t) = −
(

gL(x − VR)− fν
)

pv(x, t)

−f2ν

2

∂

∂x
pv(x, t). (8)

The appropriate initial condition for Eq. (7) is

pv(x, 0) = δ(x− VR), (9)

as the neuronal voltage always starts at the reset voltage,
VR, after a total firing event.
The FPE (7) requires two boundary conditions. In

particular, a reflecting boundary condition is imposed at
x = VR because the actual neuronal voltage cannot dip
below VR, nor are any neuronal voltages injected into
the network at x = VR, due to the fact that firing neu-
rons are removed from the system rather than having
their voltages reset to VR, as discussed above. This re-
flecting boundary condition requires the probability flux,
J [pv](x, t), in Eq. (8) to vanish at x = VR [61, 62]:

J [pv](VR, t) = 0. (10a)

In addition, the approximation that the neurons are re-
moved from the network when their voltages reach the
threshold VT is encoded in the absorbing boundary con-
dition at VT :

pv(VT , t) = 0. (10b)

Solving Eq. (7) with initial condition (9) and boundary
conditions (10) is carried out in terms of an eigenfunction
expansion involving confluent hypergeometric functions
(see Appendix A for details). The dependence of the
solution pv(x, t) on the voltage x for several moments
of time t is depicted in Fig. 3. The probability that at
time t the given neuron has not yet fired, P (T ≥ t), as
calculated from pv(x, t) using Eq. (5), is shown in the
inset.
From Eqs. (5), (7), (8) and (10a), we derive that the

pdf of the first exit time is the flux of probability that
leaves through the upper boundary [63, 64],

pT (t) = J [pv](VT , t). (11)

The flux on the right-hand side can be calculated using
the above-mentioned eigenfunction expansion to obtain
pT (t), and the corresponding cdf, FT (t), is likewise cal-

culated using Eq. (5), together yielding the pdf, p
(1)
T (t),

of the minimum exit time T (1) via Eq. (3). Equation (4)
then gives the expected time between synchronous fir-
ing events, and the network firing rate is obtained as the
inverse of this expected time.

While the above derivation of the firing rate in the per-
fectly synchronous regime of the network (1) is analytical,
and both its main ingredients—the pdf and cdf of the first
passage time of a single uncoupled neuron—are given in
terms of eigenfunction expansions, the numerical evalu-
ation of the expected minimum exit time

〈

T (1)
〉

by this
method can become difficult when its pdf is concentrated
at small times. This is because, at these small times, the
proximity to the delta function initial condition for the
voltage pdf (9) calls for the evaluation of an excessive
number of terms in the eigenfunction series. Moreover,
each term in the eigenfunction series requires evaluat-
ing confluent hypergeometric functions at large values of
their arguments where their power series representations
converge poorly and various asymptotic representations
need to be used instead. The initial condition (9) also
makes solving Eq. (7) numerically difficult. Therefore,
we present an alternative approach to obtain the pdf of
the first exit time and solve it numerically.
To circumvent the convergence problems at small times

associated with the delta-function initial condition (9),
we consider an alternative equation describing the evolu-
tion of the function G(x, t), the probability that a neu-
ron’s voltage has not yet crossed threshold given that it
started at position x at time t = 0. The cdf for the
first exit time we are interest in, FT (t), is expressed as
FT (t) = 1 − G(VR, t). The function G(x, t) satisfies the
equation adjoint to the FPE [65]

∂

∂t
G(x, t) =

[

− gL(x− VR) + fν
] ∂

∂x
G(x, t)

+
f2ν

2

∂2

∂x2
G(x, t), (12a)

with the boundary conditions

∂

∂x
G(x, t)

∣

∣

∣

∣

x=VR

= 0 and G(VT , t) = 0. (12b)

The initial condition for G(x, t) is

G(x, 0) = 1, (12c)

in contrast to the delta-function initial condition for
pv(x, t).
We solve the parabolic partial differential equa-

tion (12a) with the boundary and initial condi-
tions (12b) and (12c) numerically with the Crank-
Nicolson scheme [66]. We then compute the pdf pT (t)
using a finite difference approximation for the derivative
of the cdf FT (t) = 1 − G(VR, t), both of which are then

used to compute the pdf, p
(1)
T (t), for the minimum exit

time of all the N voltages via Eq. (3). The average of
this time is then computed by integrating numerically the
right-hand side of Eq. (4), and the network firing rate is
again obtained as its inverse. Sample pdfs for pT (t) and

p
(1)
T (t) obtained in this way are shown in Fig. 4 which

compare well with the results obtained from the full nu-
merical simulation of the original IF dynamics (1).
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Results depicting the dependence of the network firing
rate on the driving strength fν are presented in Sec. IVC.
The approximate theories described in this Section and
Sec. IVB2 are also verified against numerical simulations
of the network (1).

B. Firing Rate via Average Maximal Voltage

The Fokker-Planck approximation (7) restricts us to
consider the network dynamics in the small-fluctuation
regime, f → 0, ν → ∞ and fν ∼ O(1). In this regime,
after a cascading total firing event during which all the
neuronal voltages are reset to zero, it is natural to ex-
pect that the spread of the voltages stays small relative
to their mean during the subsequent time evolution, and
thus that the voltage dynamics can be described in a
simple, explicit fashion. Here, we quantify such an ap-
proximation using a central-limit argument in which we
neglect the reset upon crossing threshold VT , and simply
allow the neuronal voltages to evolve freely according to
Eq. (1). Such an approximation is of course only appro-
priate until the first neuron fires again after a total firing
event. In addition to being used in Sec. V for computing
the probability of the network to be cascade-susceptible,
this pdf also allows for a simple approximation to the
time between total firing events that is valid in the su-
perthreshold regime. In particular, in this regime, the
time for the first neuron to cross threshold can be ap-
proximated by the time it takes the average maximal
voltage to reach threshold, as described in Sec. IVB2.

1. Gaussian Approximation of Voltage Distribution

In this section, we describe how the pdf for a typical
neuron voltage in the synchronized network evolves at
times between total firing events. During these times, the
voltage of each neuron can be expressed as a random sum,
and in the small-fluctuation regime, we use a central-
limit argument to show that their pdfs can be well ap-
proximated by independent Gaussian distributions. We
outline the main steps here, and present the details in
Appendix B.
When the network is in the perfectly-synchronous

state, no neurons fire during the time period between
cascading total firing events, thus all the input to a given
neuron is generated by the external spike train. More-
over, since the Poisson point process defining the in-
coming spike times, sjl, has constant rate, the time can
be reset to zero and the initial conditions vj(0) = VR,
j = 1, . . . , N , can be assigned after any total firing event.
The solution to Eq. (1) during this time period is

vj(t) = VR +

M(t)
∑

l=1

fe−gL(t−sjl), (13)

as we are not considering the reset mechanism when the

voltage reaches threshold. The number, M(t), of external
spikes arriving at the jth neuron before the time t is ran-
dom and Poisson-distributed with mean νt. We remark
that because the number M(t) of terms in the sum (13)
is random, the standard central-limit theorem does not
directly apply to deriving the pdf of the voltage in (13)
for large M(t). Below we therefore construct a modifica-
tion of the argument used to establish the central limit
theorem, tailored to this random sum.
We restrict our discussion to the the small-fluctuation

regime and to times large compared to the inverse Pois-
son rate of the incoming external spike train, 1/ν. In
this case, the voltage in Eq. (13) is a sum of a large, ran-
dom number of independent random variables. Using a
central-limit argument, we compute the cumulants of the
corresponding voltage pdf and show in Appendix B that
those of order 3 and higher are negligible for the voltage
vj(t) in Eq. (13). This implies that, under the conditions
f ≪ gL(VT − VR) and ν ≫ gL while fν ∼ O(1), the pdf
of the neuronal voltage, vj(t), which is not reset to VR

when it reaches threshold, is well approximated by the
Gaussian distribution,

pv(x, t) ∼
1√

2πσ(t)
exp

(

− (x− µ(t))2

2σ2(t)

)

, (14a)

with the average voltage

µ(t) = VR +
fν

gL

(

1− e−gLt
)

, (14b)

and the voltage variance

σ2(t) =
f2ν

2gL

(

1− e−2gLt
)

, (14c)

both of which are derived in Appendix B. Note that, as
time increases, both the mean and the variance of the
voltage grow, as consistent with intuition, and asymp-
totically approach the values VR + fν/gL and f2ν/2gL,
respectively. Later, the cdf of the voltage will also be
needed, which is given by

Fv(x, t) ∼
1

2

[

1 + erf

(

x− µ(t)√
2σ(t)

)]

, (14d)

where

erf(z) =
2√
π

∫ z

0

e−t2 dt (15)

is the error function.

2. Approximation for Mean Time Between Cascading Total

Firing Events

Using the approximate voltage distribution (14a), and
the fact that the voltages of the neurons are effectively
uncoupled and driven by independent spike trains be-
tween total firing events, we now calculate the average
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maximum voltage from among these non-reset voltages
at time t. The inverse of the time at which this average
maximal voltage equals threshold voltage is then used to
approximate the firing rate of the synchronous network
in the superthreshold regime. Note that this approach
cannot be used in the subthreshold regime because the
average maximum voltage may never reach threshold; the
network firing in that regime is driven essentially by the
voltage fluctuations.
For the synchronous network, the distribution of the

maximal of the N voltages in the network is given by

p(N)
v (x, t) = Npv(x, t)Fv(x, t)

N−1. (16)

In the superthreshold regime, in which the standard de-
viation of the maximal neuronal voltage is small in com-
parison to the mean of its distribution, the time τ when
the first neuron crosses threshold can be approximated
by the deterministic time it takes for the average of the
maximal voltage to reach threshold, i.e.

VT =

∫ ∞

−∞

xp(N)
v (x, τ)dx. (17)

Solving Eq. (17) for τ , we obtain the firing rate of the
network as τ−1.
We can simplify the calculation of the time the first

neuron crosses threshold considerably if we properly non-
dimensionalize Eq. (17). In particular, from Eqs. (14a)

and (14d) it is clear that the maximal voltage distribu-

tion, p
(N)
v (x, t), in (16) can be written in terms of the

normalized dimensionless variable

y = y(x, t) =
x− µ(t)

σ(t)
. (18)

Thus, we obtain p
(N)
v (x, t) = g(N)(y(x, t))/σ(t), with

g(N)(y) =
Ne−y2/2

2N−1/2
√
π

[

1 + erf(y/
√
2)
]N−1

(19)

being the pdf for the maximal of N independent random
variables distributed according to the standard Gaussian
distribution. Equation (17) can now be rewritten as

VT = σ(t)µN + µ(t), (20)

where

µN =

∫ ∞

−∞

yg(N)(y) dy (21)

is now a universal quantity which only depends on the
network size N . Using Eqs. (14b) and (14c), we can
derive the explicit dependence of the time, τN , when
the first of the N neurons crosses threshold, on µN , the
external-drive spike strength f , and Poisson rate ν as

τN =
1

gL
ln





fν
(

2ν + gLµ
2
N

)

2ν [fν − gL (VT − VR)] + gLµN

√

f2ν2µ2
N + 4fν2 (VT − VR)− 2gLν (VT − VR)

2



 . (22)

The value of µN in Eq. (21) can be obtained via numerical
integration for each network size N ; its graph is shown
in Fig. 6. The first neuron crossing time τN can then be
obtained from Eq. (22). Note that in the zero-fluctuation
limit, f → 0, fν = O(1), the time τN in Eq. (22) reduces
to the deterministic oscillation period τ̂ in Eq. (2) as

τN = τ̂−µN

√

(VT − VR)[2fν − gL(VT − VR)]√
2fν[fν − gL(VT − VR)]

√

f+O(f).

(23)
Note also that the time τN approaches infinity as the
driving strength fν approaches the value

fν =gL

[

VT − VR

+
1

4

(

fµ2
N − µN

√

8f(VT − VR) + f2µ2
N

)

]

from above, for any given external-drive spike strength f

and network size N . The term gL(VT − VR) corresponds
to the zero-fluctuation limit, while the remaining terms
give corrections for finite-size fluctuations.
As an alternative to numerical integration of Eq. (21),

since the pdf g(N)(y) in Eq. (19) is narrow for large net-
work size N , we can approximate its mean µN by its
mode, i.e., the value ymax(N) at which the pdf is maxi-
mized. The dependence of ymax(N) on the network size
N can again only be obtained numerically (see Fig. 6).
However, for large N , the value ymax(N) is well approx-
imated by the expression

ymax(N) ∼
√

ln
N2

2π
− ln

(

ln
N2

2π

)

. (24)

The derivation of this asymptotic expression is given in
Appendix C.
In Fig. 6, we present the plots of the quantities µN ,

ymax(N), and the asymptotic expression in Eq. (24) as
functions of the network size N . They agree with each
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other reasonably well for N > O(10). However the curve
ymax(N) and its approximation in Eq. (24) produce a
slight undershoot. This is because the width of g(N)(y)

scales only as
√
lnN , so the approximation of its mean

µN by its mode ymax(N) will have a logarithmically-
slowly decaying error. The network firing rates obtained
using the approximations devised in this section will be
discussed in the next section, where they will also be
compared with the firing rates obtained using the more
sophisticated first-passage-time method of Section IVA
and those computed using numerical simulations.

C. Validity of Firing Rate Approximations

In this section, we discuss the results obtained from
the two theoretical solutions discussed in Secs. IVA
and IVB2. These results are presented in the form of
gain curves depicting the frequency of the synchronized
oscillations (i.e., the average network firing rate) versus
the average external current fν, shown in Fig. 7 along
with the corresponding gain curves computed via numer-
ical simulation of the network (1). The comparison with
the numerically-computed gain curves is presented in or-
der to check the validity of the assumptions used in the
theoretical calculation of the firing rates.
As seen in Fig. 7(a), the synchronized network fires

more frequently than a single neuron driven by a deter-
ministic constant current (Eq. (2)), indicating a depen-
dence on the size of the fluctuations of the neuronal volt-
ages about the average network voltage. Both Figs. 7(a)
and 7(b) indicate that the simpler maximal-voltage the-
ory of Section IVB2 describes the gain curves well in
the superthreshold regime, but the more involved first-
passage-time theory of Section IVA is needed to accu-
rately describe the subthreshold regime, in particular,
for larger values of f , i.e. larger fluctuations.
As either f , the strength of the external driving spikes,

or N , the size of the network, increases, it becomes more
likely to find one neuronal voltage further from the mean;
this voltage reaches threshold faster and causes a total fir-
ing event. To understand the dependence of spike rate,
m, on f and N , we first note that the size of the standard
deviation, the square root of the expression in Eq. (14c),
of the voltage pdf pv(x, t) scales as

√
f for fixed fν. De-

creasing f within the small-fluctuation regime tightens
the pdf pv(x, t) of the neuronal voltages, thereby extend-
ing the amount of time needed for some neuron to reach
threshold, and slowing the firing rate. We obtain this
same scaling for m − 1/τ̂ , where τ̂ is the deterministic
oscillation period in Eq. (2), by taking m = 1/τN from
Eq. (22) and using the expansion (23). The size of the
network N has a weaker effect on the firing rate since the
typical deviation of the maximal neuronal voltage from
the mean neuronal voltage in a population of N neu-
rons grows approximately logarithmically with N . This
is seen through the large-N (i.e., large-µN) asymptotics
of Eq. (22), which give m ∼ f2νµ2

N/(VT − VR)
2 + O(1),

and replacing the mean µN by the expression in Eq. (24).
We have verified through full simulations of system (1)
that the firing rate depends on the square root of the
spike strength f for small f near the deterministic oscil-
lation period τ̂ , and logarithmically on the network size
N for large N , under fixed superthreshold external driv-
ing strength fν, as shown in the insets in Fig. 7.

V. PROBABILITY TO BE CASCADE
SUSCEPTIBLE

In this section, we investigate in which parameter
regimes the neuronal network (1) exhibits perfect syn-
chronous behavior, manifested through cascading total
firing events. As we recall from Secs. III and IV, dur-
ing such an event, the firing of one neuron causes all
subsequent neurons to fire in immediate succession. To
determine if the network is expected to exhibit this type
of synchrony, we follow the evolution of neuronal volt-
ages initially set at the reset value VR, and compute the
probability that, when the first neuron fires, all the other
neurons are in a configuration that allows for a cascad-
ing total firing event. This is precisely the probability
for the network to be cascade-susceptible. We further in-
vestigate this probability in situations when additional
physiological effects that can impede or break synchrony
are incorporated into the model.

A. Theoretical Calculation

A cascading total firing event occurs if, for any given
neuron, the total input current from neurons with greater
voltage, firing previously in the cascade-firing event, is
sufficiently large to bring this neuron’s voltage above
threshold, and therefore fire. In other words, the cascade-
firing event is being perpetuated until all neurons fire. If
we order the neuronal voltages so that V (k) > V (j) for
k > j at the time the first neuron fires, T (1), then the
above consideration can be summarized as an intersec-
tion of events in the cascade-susceptibility condition

C =
N−1
⋂

k=1

Ck, (25)

where Ck denotes the event

Ck : VT − V (k) ≤ (N − k)
S

N
, (26)

with S being the coupling strength among the N neurons
in the network. The probability P (C) of the event C is
computed in terms of the distribution of the neuronal
voltages.
We compute the probability of condition (25) being

satisfied by integrating over the conditional probability
of the random time T (1) at which the first neuron fires:

P (C) =

∫ ∞

0

P (C | T (1) = t)p
(1)
T (t)dt. (27)
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Here, the pdf for the exit time of the first of N neurons,

p
(1)
T (t), is given in Eq. (3). We simplify the computa-

tion by approximating the conditional probability distri-
bution in the integrand of (27) as if each neuronal volt-
age were independently distributed according to its freely
evolving (without reset) probability distribution pv(·, t)
evaluated at the specified time t, subject to the condi-
tion that the neuron with maximum voltage is at that
moment of time exactly at threshold:

P (C | T (1) = t) ≈ P (C | V (N)(t) = VT ). (28)

The conditions expressed on the two sides of Eq. (28)
are not quite equivalent because the condition T (1) = t
implies also that no neuron’s voltage ever reached thresh-
old before time t, whereas the approximating condition
V (N)(t) = VT makes no reference to the properties of
the voltages at times previous to t. The error in this ap-
proximation is expected to be small because the neuronal
voltages are rising on average so the condition that the
neuron with maximal voltage is at threshold at the end
of the interval [0, t] makes it rather unlikely that any of
the neurons crossed threshold much earlier.
Under the approximation in Eq. (28), in the small-

fluctuation regime, we use the Gaussian approxima-
tion (14a) for the freely evolving single neuron voltage
distribution, truncated at VR and VT and renormalized
to unit integral over the voltage interval VR < x < VT ,
to obtain the pdf of the voltages for the neurons which
have not yet fired at time t,

p̃v(x, t) =
pv(x, t)

∫ VT

VR

pv(x
′, t) dx′

, VR < x < VT . (29)

The accuracy of the approximation in Eq. (28) was ver-
ified by measuring the distance between the proposed
theoretical cdf derived from the pdf in Eq. (29) and the
sample cdf taken from full numerical simulations of the
system (1) using the Kolmogorov-Smirnoff test (with sig-
nificance level α = 0.05).
To compute the conditional probability in Eq. (27) we

will instead subtract from unity the probability of the
complement of event C, i.e., the probability that the
firing event fails to include all neurons, which is easier
to compute explicitly. The cascade-susceptibility condi-
tion (25) is not fulfilled if it contains at least one value of
k for which condition (26) fails. We divide up the com-
plement of event C into the mutually exclusive events Aj ,
each requiring condition (26) to be satisfied for k = N−1
to k = N − j + 1 and to have failed for k = N − j. The
total probability of cascade failure is the sum of the prob-
abilities to fail first at each step,

P (C | V (N)(t) = VT ) = 1−
N−1
∑

j=1

P (Aj |V (N)(t) = VT ).

(30)
To determine the probability of event Aj , we divide

the voltage interval VR ≤ x ≤ VT into bins of width S/N

starting at VT , so that the first bin is VT−S/N < x ≤ VT .
The probability pk(t) for a neuron’s voltage to be in the
kth bin is given by the formula

pk(t) =

∫ VT−(k−1)S/N

VT−kS/N

p̃v(x, t)dx, (31)

with the pdf p̃v(x, t) as in Eq. (29). For the cascade to fail
precisely at the jth neuron, one neuronal voltage must
be in the first bin, two in the first two bins, three in the
first three bins, and so forth, until j − 1 are in the first
j − 1st bins, none are in the jth bin, and the remainder
fall below the jth bin. We sum over all configurations
of the unordered neuronal voltages consistent with this
description of event Aj , resulting in

P (Aj |V (N)(t) = VT ) =
∑ (N − 1)!

n1!n2! . . . nj−1!(N − j)!

× p1(t)
n1p2(t)

n2 . . . pj−1(t)
nj−1

(

1−
j
∑

i=1

pi(t)

)N−j

(32)
where nk denotes the number of neurons with voltage in

the kth bin,

j−1
∑

k=1

nk = j− 1, and pk is defined in Eq. (31).

The remaining problem is to evaluate the terms in
Eq. (30) since enumerating the configurations of neuronal
voltages is time consuming for large j. The first few terms
dominate this sum, as simulations show that the cascad-
ing event is very unlikely to fail after the first 4 or 5
neurons fire. When evaluating the probability P (C), the
sum in Eq. (30) is terminated when terms are less than
10−4. With this tolerance, 2 to 9 terms are included de-
pending on the parameter values. In the next section, we
compare this method of computing P (C) to the result of
direct numerical simulations and discuss the dependence
on the network parameters.

B. Parameter Dependence of Synchrony

The previous section analyzed a mechanism for the net-
work (1) to maintain a self-consistent state of synchrony
by calculating the probability to see repeated cascading
total firing events. Using numerical simulations, we cal-
culate the probability to be cascade-susceptible by re-
peatedly starting all neurons at reset voltage, which is
the state after a previous cascading total firing event,
and simulating the network dynamics until the first neu-
ron fires; the probability to be cascade-susceptible is the
fraction of the total number of simulations represented
by those that lead to the firing of all N neurons in the
network. The theoretical characterization, P (C) as dis-
cussed in Sec. VA, of the network synchronizability in
terms of its governing parameters agrees well with re-
sults from numerical simulations, as illustrated in Fig. 8,
and therefore allows for a quantitative analysis of how the
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network synchrony depends on the model parameters, f ,
N , S and fν.
The synchronizability as characterized by P (C) has

smooth dependence on parameters (Figs. 8 and 9). The
system becomes more synchronizable as P (C) becomes
steeper for smaller spike strength f with the driving
strength fν held constant. Larger values of f corre-
spond to larger fluctuations spreading the neuronal volt-
ages apart, requiring larger network coupling strengths
for the cascade-susceptibility condition (25) to hold with
high probability. From Fig. 8, the synchronizability ap-
pears to depend at most weakly on the network size
N , apart from the dependence on the scaled coupling
strength S/N .
The network becomes less synchronizable for sub-

threshold driving (Fig. 9). As the average neuronal volt-
ages fall further below threshold, it is less likely a neu-
ronal voltage is S/N from threshold when the first neuron
fires, thus it is less likely for the cascading event to begin.
The smooth parameter dependence of the synchronizabil-
ity characterized by P (C) develops a sharp transition
which approaches a threshold, fν = 1, as the fluctuations
decrease, i.e., f decreases for fixed fν. The network in
the zero-fluctuation regime, in which all the neurons in
the network are driven with constant current of strength
fν, would have a sharp transition at fν = 1 from no
firing (P (C) = 0) to synchronous firing (P (C) = 1), as
depicted in the inset of Fig. 9.

C. Additional Physiological Effects

A number of physiological effects as yet not included in
the model (1) are likely to reduce the probability of total
firing events or eliminate them altogether. These effects
include network sparsity, synaptic failure, random trans-
mission delays, and finite current rise and decay times.
We add them one at a time to the model and investigate
how they affect the synchrony by comparing correspond-
ing raster plots qualitatively and calculating the prob-
ability to be cascade-susceptible both theoretically and
from numerical simulations.
Spikes from one neuron in the network are prevented

from affecting another neuron in two possible ways: per-
manently, if no synaptic connection exists between the
two neurons, or occasionally, if the synaptic transmission
fails at random. To model the first case, we construct
a random sparse network from an all-to-all coupled net-
work by removing each connection independently with
probability pc. Thus, a single neuron will be connected
to (1 − pc)N other neurons on average. We take 1 − pc
sufficiently large so that the network is likely to have only
one connected component, otherwise a total firing event
would be impossible. The second case, random synaptic
transmission failure, is modeled by preventing each spike
within the network from reaching any one of its target
neurons with probability pf . This is done by replacing
the current driving the jth neuron in Eq. (1b) with a

current of the form

Ij(t) = f
∑

l

δ(t− sjl) +
S

N

∑

i6=j

∑

k

ρjikδ(t− τik),

where ρjik = 0 with probability pf , and 1 with probabil-
ity 1 − pf . In effect, each neuron behaves as though it
is connected to (1 − pf )N other neurons on average. In
both cases, the number of input spikes a neuron receives
from the other neurons in the network is reduced. In sta-
tistical mechanics terms, synaptic failure is an annealed
disorder in which the randomness of connections between
neurons keeps fluctuating, while the random sparsity in
the network is a quenched disorder as the randomness of
connections between neurons is frozen from the start of
the simulation.
Synaptic failure and network sparsity affect the prob-

ability to be cascade-susceptible in a statistically iden-
tical fashion. The transition from synchronous to asyn-
chronous behavior remains smooth as either pf or pc is in-
creased (Fig. 10). We implement a rough modification for
our theoretical calculation of P (C) to account for either.
When considering the arrangement of the subthreshold
neurons, not only must condition (26) be satisfied for ap-
propriate values of k, but the neuron must receive each
spike either by being connected to the spiking neuron
(with probability 1 − pc) or having successful transmis-
sion (with probability 1−pf ). We modify the calculation
of P (C) by multiplying the voltage distribution (29) used
in calculating P (Aj |V (N)(t) = VT ) in Eq. (30) by either
1 − pc or 1 − pf . This modification is rather crude, in
that each neuron is assumed to receive or not receive
every potential incoming spike according to whether or
not it received the first potential incoming spike. Still,
this agrees approximately with the results from numer-
ical simulations (Fig. 10). Unlike in the discrete model
discussed in [67], we do not see the persistence of both
a synchronous and asynchronous state for the same pa-
rameter values.
Although both synaptic failure and network sparsity

are equally effective at reducing synchrony in terms of
the probability to be cascade susceptible, neither is ef-
fective at completely removing the coherent structure of
cascading events with many neurons in the network firing
at the same time, as shown in the raster plots in Fig. 10.
These cascading events are a product of the instanta-
neous coupling between the neurons in the network, and
can be eliminated by adding random delay times to the
transmission of spikes, or by incorporating finite rise and
decay times in the synaptic current model, effectively im-
posing a transmission delay.
Random delays between the time a neuron spikes and

the times the other neurons in the network receive these
spikes, modeling the variable speed of transmission or
axon length [68–70], can be described by replacing the
current (1b) with

Ij(t) = f
∑

l

δ(t−sjl)+
S

N

∑

i6=j

∑

k

δ(t−τik−Tjik), (33)



11

where each Tjik is a non-negative random variable. For
simplicity, we take Tjik to be exponentially distributed
with common mean.
Incorporating finite current rise and decay times in

the network (1) amounts to replacing the instantaneous,
delta-function currents in Eq. (1b) by α-function type
currents, where we take

α(t) = Θ(t)
t

τ2E
e−t/τE , (34)

with τE being the decay time and Θ(t) the Heaviside
function. (The rise time is defined as the time when α(t)
reaches its maximum.) As the model currents are now
continuous in time, a neuron can spike at times later than
those at which it receives spikes. Thus, while the differ-
ential equation (1a) with this type of continuous current
can still be solved explicitly, the spike times must be
found numerically. Alternatively, we numerically simu-
late the network (1a) with the delta-function currents in
Eq. (1b) replaced by α-type currents (34), using a mod-
ified version of the algorithm developed in [71].
Networks with synaptic transmission delays are always

asynchronous by our definition (Fig. 11), as transmission
delays make total firing events impossible (P (C) = 0).
However, the firing of the network is still synchronous in
a broader sense as there are smaller intervals of high firing
rate and larger intervals during which no neurons fire. A
relatively large delay time relative to the time between
the periods of high firing rate is needed to completely
de-synchronize the network.
Finite current rise times effectively act as (fixed)

synaptic delay times since, upon receiving a spike, a neu-
ron’s voltage does not increase instantaneously and so a
neuron is not likely to spike immediately. Therefore, syn-
chronous total firing events are again impossible (Fig. 12)
in networks incorporating finite current rise and decay
times, and thus P (C) = 0. Similarly to the random
delay times, this network with finite current rise times
maintains synchrony in a broader sense as described in
the preceding paragraph. Long rise and decay times are
needed to completely eliminate this broader synchronous
firing.

VI. CONCLUSIONS

Oscillatory dynamics involving cascading total firing
events in Poisson-train-driven, all-to-all coupled, excita-
tory, integrate-and-fire neuronal networks with instan-
taneous spiking appear to be natural attracting states of
such networks, at least in the small-fluctation regime [67,
72]. Our own numerical simulations have confirmed that
the basin of attraction for such oscillatory dynamics is
quite large, unlike for the asynchronous dynamics, for
which this basin becomes smaller and smaller as the size
of the external-drive fluctuations decreases [58, 72]. As
we show in Sec. VB, the sharp threshold separating no

firing in the subthreshold driving case and periodic cas-
cading total firing events in the superthreshold driving
case, which exists when the external driving is determin-
istic [24], gives way to a continuous probability distri-
bution of total firing events, depending on the external
driving strength and other network parameters, when the
network is Poisson-train-driven.

The notion of synchronizability as defined in this work
and with it the probability P (C) of a network to be cas-
cade susceptible are rather stringent in requiring all neu-
rons to fire together in cascading total firing events. In
particular, the assumption of infinitely short and instan-
taneously transmitted spikes is crucial for the perfect
synchrony described here, and thus also the relevance
of the probability P (C). As we have seen in Sec. VC,
the inclusion of either delay times or finite current rise
times immediately destroys perfect synchrony. Never-
theless, a statistical type of synchrony survives provided
these times are not too long, and a proper statistical de-
scription of it is a challenging open problem. Our firing-
rate approximations developed in Secs. IVA and IVB2
should still be at least approximately applicable under
the conditions of imperfect synchrony when a few neu-
rons fire out of step (Fig. 13).

The work presented in this paper was in part moti-
vated by the desire to understand the attractor states of
different IF-type neuronal networks. For all-to-all cou-
pled Hodgkin-Huxley networks, three types of attractor
states were found numerically using a generalization of
Lyapunov exponents for dynamical systems with discon-
tinuities: periodic, chaotic, and quasi-periodic [73, 74].
If IF-type systems are to give truly useful approximate
descriptions of neuronal network dynamics, they should
be able to reproduce the same dynamical regimes. That
this is indeed the case was confirmed for all-to-all coupled
conductance-based IF networks with finite conductance
rise and decay times [75]. On the other hand, the model
network with instantaneous response discussed here can-
not exhibit chaotic dynamics [58]. The discussion in
Sec. III shows that spike-to-spike synchrony via total fir-
ing events appears to be one of the prevalent attracting
states of the network even under random, Poisson-train
external drive. This is one of the reasons why we have
undertaken a thorough, analytical investigation of this
synchrony.

The network dynamics we have discussed in this paper
could be modified to include a highly idealized, instanta-
neous version of the bursts that occur in all-excitatory
networks, as described in [19–23]. This modification
would consist of allowing a neuron’s voltage to jump up
in the course of a cascading firing event even after this
neuron has fired. Thus, every neuron would have the
potential to spike several, if not infinitely many, times
during one such an event. The resulting instantaneous
bursts could therefore in principle contain infinitely many
spikes; for this not to happen, one should include re-
fractory effects such as synaptic depression consisting
of either an increased probability of transmission failure
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or some attentuation mechanism for the size of voltage
jumps due to a spike as the burst proceeds.
Finally, in Sec. VC we also addressed the question of

how network architecture affects perfect synchrony in the
case of a sparse network with randomly-chosen missing
interneuronal connections. For more general network ar-
chitecture types, this question is still open. We are in
the process of addressing it in the case of scale-free net-
works [76].
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Appendix A: Solution to the FPE

To solve Eq. (7), we develop a series expansion of the
form [65]

pv(x, t) = ps(x)

∞
∑

n=0

AnQn(x)e
−λnt, (A1)

where Qn(x) and λn are the eigenfunctions and eigenval-
ues of the adjoint problem

[

− gL(x− VR) + fν
] d

dx
Qn(x)

+
f2ν

2

d2

dx2
Qn(x) + λnQn(x) = 0, (A2a)

with boundary conditions

d

dx
Qn(x)

∣

∣

∣

∣

x=VR

= 0 (A2b)

and

Qn(VT ) = 0. (A2c)

The function

ps(x) = exp

(

− (gL(x− VR)− fν)2

f2νgL

)

(A3)

is the stationary solution for the related problem of
Eq. (7) but with reflecting boundary conditions at both
ends (zero flux). The constants An are determined from
the initial condition (9) via the equation

∫ VT

VR

δ(x − VR)Qn(x)dx = An

∫ VT

VR

ps(x)Q
2
n(x)dx,

for which the δ-function resides inside the interval, as it
represents the initial probability density and must inte-
grate to unity, so that

An =
Qn(VR)

∫ VT

VR
ps(x)Q2

n(x)dx
. (A4)

The solution to Eq. (A2a) is obtained through two
transformations of variables. First, we shift and rescale
the variable x so that

z =
gL(x− VR)− fν

f
√
gLν

.

The system is now driven to z = 0 by the average drift,
and has essentially been rescaled by the standard devia-
tion, which is O(f

√
ν). Taking another transformation,

ζ = z2, Eq. (A2a) for Qn(x) becomes the equation for

the transformed solution Q̂n(ζ),

ζQ̂′′
n(ζ) +

(

1

2
− ζ

)

Q̂′
n(ζ) +

λn

2gL
Q̂n(ζ) = 0, (A5)

where Qn(x) = Q̂n(ζ(z(x))).
Equation (A5) is a subcase of the confluent hypergeo-

metric equation

ξ
d2w(ξ)

dξ2
+ (b− ξ)

dw(ξ)

dξ
− aw(ξ) = 0. (A6)

Its solutions are linear combinations of the Kummer func-
tion [77],

1F1(a, b, ξ) =

∞
∑

n=0

(a)nξ
n

(b)nn!
, (A7a)

and either

ξ1−b
1F1(1− a, 2− b, ξ) (A7b)

or the associated Kummer function

U(a, b, ξ) =
π

sinπb

[

1F1(b − a, b, ξ)

Γ(1 + a− b)Γ(b)

−ξ1−b
1F1(1− a, 2− b, ξ)

Γ(a)Γ(2 − b)

]

. (A7c)

Here (c)0 = 1, (c)n = c(c+ 1)(c+ 2) . . . (c+ n− 1) is the
Pochhammer symbol [78].
For our Eq. (A2), the first solution in terms of the

variable z, where the replacement ζ = z2 has been made,
is

1F1

(

− λn

2gL
,
1

2
, z2
)

. (A8a)

The second linearly independent solution can be written
as either

|z|1F1

(

− λn

2gL
+

1

2
,
3

2
, z2
)

(A8b)
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or

U

(

− λn

2gL
,
1

2
, z2
)

. (A8c)

We choose those forms of the second solution at different
stages of the calculation to best reduce numerical error.
The two functions in formulas (A8b) and (A8c) are not

smooth at z = 0 because the mapping of z → ζ is 2-1
rather than 1-1. Since the solutions, Q̂(ζ(z)), must be
continuously differentiable at z = 0, two different linear
combinations must be taken for z > 0 and z < 0, with
function and derivative matching at z = 0. The resulting
4×4 system of equations for determining the eigenvalues
reduces to a single equation,

φ1(λn) + φ2(λn) = 0, (A9)

where for any given basis of y1(z) from Eq. (A8a) and
y2(z) chosen from Eqs. (A8b) and (A8c), we define

φ1(λn) = (dy2(zR)/dz)
/

(dy1(zR)/dz) and φ2(λn) =

y2(zT )/y1(zT ). Equation (A9) is solved numerically for
the eigenvalues, λn. The solution, pv(x, t), to Eq. (7)
is obtained by numerically evaluating a sufficiently large
number of terms in Eq. (A1).

Appendix B: Cumulants of the Subthreshold
Voltage pdf

In this appendix, we compute the cumulants of the
neuronal voltage vj(t) given by Eq. (13), which were used
in the argument presented in Sec. IVB 1.
We revisit the neuronal voltage vj(t) in Eq. (13), which

was derived from the differential equation (1) for the time
period between total firing events. Since the external
drive to any neuron is given by a Poisson spike train, at
any given time t > 0, the number M(t) of the spike times
sjl that have arrived at the neuron by this time is Pois-
son distributed with mean νt, and their locations can be
considered as generated independently from the uniform
distribution over the time interval 0 < s < t [79]. There-
fore, for statistical purposes, we can rewrite Eq. (13) as

v(t) = VR +

M(t)
∑

l=1

fe−gL(t−Ul(t)), (B1)

where the random variables Ul(t), l = 1, . . . ,M(t), are
independent and uniformly distributed between 0 and
t. Equivalently, v(t) is the sum of a random number,
M(t), of independent random variables, each identically
distributed over the r-interval fe−gLt ≤ r ≤ f with the
pdf 1/rgLt.
We next find the cumulants of v(t) in Eq. (B1) by

repeated differentiation of the cumulant generating func-
tion, Φv(k) = ln

〈

eikv(t)
〉

[79]. For the sum (B1) of a ran-
dom number of independent and identically-distributed

random variables, the characteristic function
〈

eikv(t)
〉

is
the composition of the probability generating function
〈

sM(t)
〉

= exp(νt(s− 1)) of the Poisson-distributed num-
ber of spikes and the characteristic function of each term
in the sum [79], and equals

Φv(k) = ikVR + νt

[

1

gLt

∫ f

fe−gLt

eikr

r
dr − 1

]

. (B2)

The nth cumulant cn[v(t)] of the voltage in Eq. (B1) is
given by the expression

cn[v(t)] = (−i)n
dnΦv(k)

dkn

∣

∣

∣

∣

k=0

,

which gives the mean voltage c1[v(t)] as in Eq. (14b), and

cn[v(t)] =
fnν

ngL

(

1− e−ngLt
)

(B3)

for n ≥ 2. In particular, the voltage variance is given by
Eq. (14c).
We find, in particular, that the nth cumulant of the

voltage is of order O(νfn). (The O(fn) dependence
of the cumulants follows simply from the appearance
of the spike strength, f , as a multiplicative constant
in the random terms of the sum in Eq. (13)). In the
small-fluctuation regime, we demand that fν = O(1)
while taking f ≪ gL(VT − VR) and ν ≫ gL, and so
we find that the mean voltage is O(1) and its stan-
dard deviation is O(

√
νf). Therefore, the nth order cu-

mulants of the pdf of the voltage in Eq. (13), normal-
ized with respect to its standard deviation, will scale as
(νfn)/(

√
νf)n ∼ O(ν1−n/2), which is indeed negligible

for n ≥ 3.

Appendix C: Asymptotic for Approximation of
Average Maximal Voltage

Here, we derive the approximate formula (24) for
the maximal value ymax(N) of the pdf g(N)(y) in
Eq. (19). From the definition of the function erf(·)
in Eq. (15), we find that ymax(N) solves the equation√
πy/

√
2
[

1 + erf(y/
√
2)
]

= (N−1)e−y2/2. For y ≥ 0, the
left-hand side of this equation is an increasing function
of y, beginning with zero value at y = 0, while the right-
hand side is a decaying function of y. Therefore, this
equation has a unique solution. As the left-hand side is
clearly smaller than the right-hand side for y = O(1) and
N ≫ 1, we know that the solution must satisfy y ≫ 1.
Using the large-z asymptotic expansion erf(z) ∼ 1 −
e−z2

/
√
πz +O(e−z2

/z3), we consequently derive the ap-

proximate equation
√
2πy = Ne−y2/2 + O(Ne−y2/2/y2),

valid for large N and y. At the leading order, this equa-
tion can be rewritten as y2 = ln(N2/2π)− ln y2, and two
iterations produce the approximation (24).
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FIG. 1: Raster plots of firing times for the system of N = 1000
neurons (only 100 shown) with initial voltages chosen ran-
domly between VR and VT . For the synchronizable network
(c), with f = 0.0002, fν = 1.2 and S = 10.0, one total
firing event is followed by another total firing event with
high probability, P (C) = 0.952. The other two systems,
(a) with f = 0.01, fν = 1.2 and S = 0.5, and (b) with
f = 0.02, fν = 1.2 and S = 1.0, do not satisfy our strin-
gent definition of synchronizability.
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FIG. 2: Average cascade size per firing event as a function
of spike strength, f , and coupling strength, S, for a network
of N = 100 neurons with initial voltages chosen randomly
between VR and VT . (top) Subthreshold regime, fν = 0.9
and (bottom) superthreshold regime, fν = 1.2. If no firing
events were detected during the t = 400 run, the cascade size
was assigned to be zero.
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FIG. 3: (color online) The relation between the probability,
P (T > t) in Eq. (5), of a single neuron to have not yet fired
(inset) and the solution, pv(x, t), to the Fokker-Planck equa-
tion (7) at the indicated points in time with f = 0.01 and
fν = 0.95.
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uncoupled, neuron (Eq. (11), solid line, blue online) and the

pdf, p
(1)
T (t), for the first exit time of N = 500 neurons (Eq. (3),

dashed line, red online) are compared to the results from 2000
numerical simulations of the single neuron and a network of
500 neurons (triangles and circles, respectively). The values
f = 0.001 and fν = 1.0 are used.
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Eq. (14a), of the voltage of a typical neuron (dark grey, blue

online), and the pdf, p
(N)
v (x, t) in Eq. (16), of the maximum

voltage of a set of N = 500 neurons (grey, green online) at
time t = 1.5, compared with results from Monte Carlo simu-
lations of the network (1). The values f = 0.001 and fν = 1.0
are used.
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FIG. 6: The dependence of the solutions µN (Eq. (21), dash-
dotted line, red online) and ymax(N) (dashed black line),
along with its approximation (24) (grey line, green online)
on the network size, N . The approximation (24) is derived
assuming N ≫ 1.
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are compared with those obtained from numerical simulations
(open circles) of system (1) for 300 time units, as a function
of fν. In (a) the gain curves for the indicated values of f
while N = 100 and S = 10 show the synchronized stochas-
tic network fires at a rate faster than τ̂−1, the synchronized
deterministic network firing rate in Eq. (2) (black line). In
(b) the gain curves are plotted for the indicated values of N
while f = 0.01 and S = 20. The inset in (a) compares the
results of simulations (symbols) to the first term in the ex-
pansion of 1/τN − 1/τ̂ about f = 0, indicating a square root
dependence of the firing rate, m, on the size of the fluctua-
tions, f , for constant fν = 1.20, N = 100 and S = 10. The
inset in (b) compares the results of simulations (symbols) to
1/τN − 1/τ̂ computed with µN from Eq. (21) (solid line) and
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indicating a logarithmic dependence of the firing rate, m, on
the size of the network, N , for constant fν = 1.2, f = 0.01
and S = 20.
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FIG. 8: Probability that condition (25) holds, P (C), vs. net-
work coupling strength scaled by network size, S/N , com-
puted with the method in Sec. VA (lines) and from numeri-
cal Monte Carlo simulation of system (1) (symbols), averaged
over 500 simulations. Top: For the indicated values of f ,
N = 100 and fν = 1.2. Bottom: For the indicated values of
N , fν = 1.2 and f = 0.001. Inset: same data plotted vs. S.
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FIG. 9: Probability that condition (25) holds, P (C), vs. mean
external current, fν, computed with the method in Sec. VA
(solid lines) and from Monte Carlo numerical simulation of
system (1) (symbols), averaged over 500 samples. For each
curve with the indicated values of f , N = 100 and S = 1.5.
Inset: Value of fν at the location of the transition (where
P (C) = 0.5) between asynchronous and synchronous behavior
as a function of fluctuation size, f .
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(a)Synaptic failure: f = 0.001, fν = 1.2, S = 2.0 and (left) pf = 0.90
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(b)Network sparsity: f = 0.001, fν = 1.2, S = 2.0 and (left) pc = 0.90

FIG. 10: (color online) Behavior of the network (1) with the addition of (a) synaptic failure and (b) sparse random network
connections. Theoretical computation with modification to Eq. (30) (solid lines) is compared to results from numerical Monte
Carlo simulations (circles with error bars), averaged over 500 simulations and (b) 10 networks.
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FIG. 11: Raster plots demonstrating the behavior of the
network with random transmission delay. N = 100, f =
0.001, fν = 1.2, S = 0.1; (top) no delay (middle) average
delay 0.002 (bottom) average delay 0.2
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FIG. 12: Raster plots for the network with the delta functions
in Eq. (1b) replaced by t2/τ 2

E exp(−t/τE). N = 1000, f =
0.001, fν = 1.2, S = 0.1; (top) τE = 3 × 10−6 (middle) τE =
3× 10−2 (bottom) τE = 3× 10−1



26

0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

fν

fir
in

g 
ra

te

 

 

Theory
S=2.0
S=1.0

1 1.5
0

0.5

1

fν
P

(C
)

FIG. 13: Gain curve comparison between the theory (solid
line) derived in Sec. IVA and full numerical simulations of
system (1) (symbols) when P (C) < 0.85, our cutoff for clas-
sifying the network as synchronous. For the two values of
internal coupling, we keep N = 100 and f = 0.001 constant.
Inset: The value of P (C) obtained from Monte Carlo nu-
merical simulations (500 samples) for both values of S as a
function of fν.


